Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

How Did Birds Get Their Wings? Bacteria May Provide a Clue

By R&D Editors | May 6, 2016

Gram-stained P. aeruginosa bacteria (pink-red rods) [Credit: Wikipedia]How did birds get their wings? Bacteria may provide a clue, say scientists

The evolution of major novel traits – characteristics such as wings, flowers, horns or limbs – has long been known to play a key role in allowing organisms to exploit new opportunities in their surroundings.

What’s still up for debate, though, is how these important augmentations come about from a genetic point of view.

New research from an international team of evolutionary biologists, led by the University of Oxford, has used bacteria to show that acquiring duplicate copies of genes can provide a ‘template’ allowing organisms to develop new attributes from redundant copies of existing genes.

Gene duplication has been proposed as playing a key role in innovation since the 1970s, but these findings add important empirical evidence to support this theory.

The study, which involved collaboration with researchers from the University of Zurich, is published in the journal PLOS Genetics.

Professor Craig MacLean, a Wellcome Trust Research Fellow in the Department of Zoology at Oxford University, said: “The appearance of novel traits, such as wings and flowers, has played a key role in the evolution of biological diversity. However, it is usually difficult to understand the actual genetic changes that drive these evolutionary innovations. We have taken advantage of a simple bacterial model system, where bacteria evolve the ability to eat new food sources, to overcome this obstacle.”

The researchers allowed 380 populations of Pseudomonas aeruginosa bacteria to evolve novel metabolic traits such as the ability to degrade new sugars. This gave the researchers the opportunity to witness evolution happening in real-time.

After 30 days of evolution, they sequenced the genomes of bacteria that had evolved novel metabolic traits. They found that mutations mainly affected genes involved in transcription and metabolism, and that novelty tended to evolve through mutations in pre-existing duplicated genes in the P. aeruginosa genome.

Duplication drives novelty because genetic redundancy provided by duplication allows bacteria to evolve new metabolic functions without compromising existing functions. These findings suggest that past duplication events might be important for future innovations.

Professor MacLean added: “The key insight of our study is that having redundant copies of genes provides bacteria with a template for evolving new traits without sacrificing existing traits. In other words, redundant genes allow bacteria to have their cake and eat it.In higher organisms like animals and plants, duplicate genes arise from spontaneous duplication of existing genes. In contrast, bacteria tend to acquire duplicate genes from neighboring bacterial cells through horizontal gene transfer, which is the bacterial equivalent of sex.These findings provide important empirical evidence to support the role of gene duplication in evolutionary innovation, and they suggest that it may be possible to predict the ability of pathogenic bacteria to evolve clinically important traits, such as virulence and antibiotic resistance.”

Related Articles Read More >

Argonne webinar to explore the challenges of recycling lithium-ion batteries and solutions
U.S. DOE grants $25M to advance clean hydrogen technologies for electricity generation 
Advanced Ionics secures $4.2M for decarbonization of industrial hydrogen production
MilliporeSigma’s ZooMAb antibodies earns first-ever ACT Label from My Green Lab
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars