Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

How Does Graphene Resemble a Hedgehog?

By R&D Editors | July 28, 2015

The hedgehog-configuration of the spins and the Fermi-Level is shown. Image: Thomas Splettstößer/HZBAt a surface or interface the electron spin can form specific patterns but it remains in the surface plane. Hemholtz Zentrum Berlin researchers have now succeeded in turning the spin out of the plane, and they explain why this is a principle property.

If an electron bounces back from an obstruction it runs, as one should think, exactly back the way it came from. Quantum mechanics, however, has its own rules when it comes to electrons and particularly when it comes to electrons in graphene. When an electron in graphene runs head on against an obstruction and is scattered back, it changes its course by 180 degrees. Its spin, however, should also turn by 180 degrees but it rotates only to be 90 degrees. An electron has to be rotated by 720 degrees to get it back into its original state.

To do this experiment, several preconditions have to be met. First of all, the electron spin property has to be imparted on the graphene. Dr. Andrei Varykhalov and his coworkers have much experience since they succeeded in this in a remarkable experiment in 2008. They squeezed gold atoms underneath the graphene und thereby enhanced the spin-orbit interaction in the graphene by a factor of 10,000. The second precondition is to allow for the 180-degree backscattering. This is challenging since graphene is first and foremost famous for the absence of backscattering.

To this end, Varykhalov and the team created a band gap in the graphene. This means nothing else than sending electrons back by 180 degrees. If both are fulfilled, the spins in this band gap have to be oriented perpendicular to the graphene plane (further away, however) in the plane. The continuous transition between the two has the appearance of the prickles of a hedgehog. Model calculations have been performed by theoreticians from Budapest which confirm the experimental results.

For symmetry reasons the hedgehog structure has to be reversed elsewhere in the graphene. This does not mean that the hedgehog had no influence on the graphene. On the contrary, the so-called valley Hall effect can be used to realize a spin filter. This effect means that the electrons in the graphene are deflected to the right or left depending on which valley they are in. According to the results by Varykhalov and the other researchers, the two valleys correspond to two spin orientations, and the two spins assemble at opposite sides of the graphene sample.

These results were published recently in Nature Communications. They build on previous work published in 2011 in Physical Review B.

Release Date: July 27, 2015
Source: Hemholtz Zentrum Berlin 

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE