Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

How I Used Math to Develop An Algorithm to Help Treat Diabetes

By Dimitris Bertsimas, MIT, The Conversation | April 17, 2017

When people ask me why I, an applied mathematician, study diabetes, I tell them that I am motivated for both scientific and human reasons.

Type 2 diabetes runs in my family. My grandfather died of complications related to the condition. My mother was diagnosed with the disease when I was 10 years old, and my Aunt Zacharoula suffered from it. I myself am pre-diabetic.

As a teen, I remember being struck by the fact that my mother and her sister received different treatments from their respective doctors. My mother never took insulin, a hormone that regulates blood sugar levels; instead, she ate a limited diet and took other oral drugs. Aunt Zacharoula, on the other hand, took several injections of insulin each day.

Though they had the same heritage, the same parental DNA and the same disease, their medical trajectories diverged. My mother died in 2009 at the age of 75 and my aunt died the same year at the age of 78, but over the course of her life dealt with many more serious side effects.

When they were diagnosed back in the 1970s, there were no data to show which medicine was most effective for a specific patient population.

Today, 29 million Americans are living with diabetes. And now, in an emerging era of precision medicine, things are different.

Increased access to troves of genomic information and the rising use of electronic medical records, combined with new methods of machine learning, allow researchers to process large amounts data. This is accelerating efforts to understand genetic differences within diseases – including diabetes – and to develop treatments for them. The scientist in me feels a powerful desire to take part.

Using big data to optimize treatment

My students and I have developed a data-driven algorithm for personalized diabetes management that we believe has the potential to improve the health of the millions of Americans living with the illness.

It works like this: The algorithm mines patient and drug data, finds what is most relevant to a particular patient based on his or her medical history and then makes a recommendation on whether another treatment or medicine would be more effective. Human expertise provides a critical third piece of the puzzle.

After all, it is the doctors who have the education, skills and relationships with patients who make informed judgments about potential courses of treatment.

We conducted our research through a partnership with Boston Medical Center, the largest safety net hospital in New England that provides care for people of lower income and uninsured people. And we used a data set that involved the electronic medical records from 1999 to 2014 of about 11,000 patients who were anonymous to us.

These patients had three or more glucose level tests on record, a prescription for at least one blood glucose regulation drug, and no recorded diagnosis of type 1 diabetes, which usually begins in childhood. We also had access to each patient’s demographic data, as well their height, weight, body mass index, and prescription drug history.

Next, we developed an algorithm to mark precisely when each line of therapy ended and the next one began, according to when the combination of drugs prescribed to the patients changed in the electronic medical record data. All told, the algorithm considered 13 possible drug regimens.

For each patient, the algorithm processed the menu of available treatment options. This included the patient’s current treatment, as well as the treatment of his or her 30 “nearest neighbors” in terms of the similarity of their demographic and medical history to predict potential effects of each drug regimen. The algorithm assumed the patient would inherit the average outcome of his or her nearest neighbors.

If the algorithm spotted substantial potential for improvement, it offered a change in treatment; if not, the algorithm suggested the patient remain on his or her existing regimen. In two-thirds of the patient sample, the algorithm did not propose a change.

The patients who did receive new treatments as a result of the algorithm saw dramatic results. When the system’s suggestion was different from the standard of care, an average beneficial change in the hemoglobin of 0.44 percent at each doctor’s visit was observed, compared to historical data. This is a meaningful, medically material improvement.

Based on the success of our study, we are organizing a clinical trial with Massachusetts General Hospital. We believe our algorithm could be applicable to other diseases, including cancer, Alzheimer’s, and cardiovascular disease.

It is professionally satisfying and personally gratifying to work on a breakthrough project like this one. By reading a person’s medical history, we are able to tailor specific treatments to specific patients and provide them with more effective therapeutic and preventive strategies. Our goal is to give everyone the greatest possible opportunity for a healthier life.

Best of all, I know my mom would be proud.

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE