Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Humanity has exceeded four of nine “planetary boundaries”

By R&D Editors | January 16, 2015

An international team of researchers says climate change, the loss of biosphere integrity, land-system change and altered biogeochemical cycles like phosphorus and nitrogen runoff have all passed beyond levels that put humanity in a “safe operating space.”

Civilization has crossed four of nine so-called planetary boundaries as the result of human activity, according to a report published in Science by the 18-member research team. Among them is Steve Carpenter, director of the Univ. of Wisconsin-Madison Center for Limnology and the only U.S.-based researcher on the study.

It should be a wake-up call to policymakers that “we’re running up to and beyond the biophysical boundaries that enable human civilization as we know it to exist,” says Carpenter.

For the last 11,700 years until roughly 100 years ago, Earth had been in a “remarkably stable state,” says Carpenter. During this time, known as the Holocene epoch, “everything important to civilization” has occurred. From the development of agriculture, to the rise and fall of the Roman Empire, to the Industrial Revolution, the Holocene has been a good time for human endeavors.

But over the last century, some of the parameters that made the Holocene so hospitable have changed.

While the study focuses on several of these, including climate change and a troubling loss of biodiversity, Carpenter led the examination of biogeochemical cycle changes. Specifically, Carpenter looked at two elements essential to life as we know it: phosphorus and nitrogen.

Both are widely used to fertilize crops, and the rise of large-scale, industrial agriculture has led to an immense increase in the amount of the chemicals entering our ecosystems.

“We’ve changed nitrogen and phosphorus cycles vastly more than any other element,” Carpenter says. “(The increase) is on the order of 200 to 300%. In contrast, carbon has only been increased 10 to 20% and look at all the uproar that has caused in the climate.”

The increase in phosphorus and nitrogen has been especially detrimental to water quality. Phosphorus loading is the leading cause of both harmful algal blooms and the oxygen-starved “dead zone” in Lake Erie. Likewise, nitrogen flowing down the Mississippi River is the main culprit behind the “dead zone” in the Gulf of Mexico.

While nitrogen and phosphorus levels overall are well beyond the Holocene boundaries, Carpenter says the chemical load isn’t spread evenly over the planet.

“There are places that are really, really overloaded with nutrient pollution,” he says. “Wisconsin and the entire Great Lakes region are some of those. But there are other places where billions of people live that are undersupplied with nitrogen and phosphorus.”

For instance, much of Africa is largely lacking these two essential elements, Carpenter says. “We’ve got certain parts of the world that are overpolluted with nitrogen and phosphorus, and others where people don’t even have enough to grow the food they need.”

It’s a “distribution problem,” Carpenter says, and suggests places like the Midwestern U.S. could vastly reduce its use of fertilizers and still maintain productive crops while nutrient-poor regions of the globe increase their use—all while keeping the global levels safely within the study’s prescribed “planetary boundary.”

“It might be possible for human civilization to live outside Holocene conditions, but it’s never been tried before,” Carpenter says. “We know civilization can make it in Holocene conditions, so it seems wise to try to maintain them.” 

Source: Univ. of Wisconsin-Madison

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE