Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

IBM Patents Machine Learning Models for Drug Discovery

By R&D Editors | April 7, 2017

IBM announced that its scientists have been granted a patent on machine learning models to predict therapeutic indications and side effects from various drug information sources. IBM Research has implemented a cognitive association engine to identify significant linkages between predicted therapeutic indications and side effects, and a visual analytics system to support the interactive exploration of these associations.

This approach could help researchers in pharmaceutical companies to generate hypotheses for drug discovery. For instance, strongly correlated disease-side-effect pairs identified by the patented invention could be beneficial for drug discovery in many ways. One could use the side-effect information to repurpose existing treatments (e.g. drugs causing postural hypotension could be potential candidates for treating hypertension). If a new drug is being designed for a disease that is strongly correlated with severe side effects, then special attention could be paid to controlling the formulation and dosing of the drug in the clinical trials to prevent serious safety issues.

IBM was granted U.S. Patent 9,536,194: Method and system for exploring the associations between drug side-effects and therapeutic indications for this invention.  

Lack of efficacy and adverse side effects are two of the primary reasons a drug fails clinical trials, each accounting for around 30 percent of failures. Computational models and machine learning methods that can derive useful insights from large amounts of data on drugs and diseases from various sources hold great promise for reducing these attrition rates and improving the drug discovery process.

“As inventors at IBM, we have the opportunity to help solve real-world problems,” said Jianying Hu, Senior Manager and Program Director, Center for Computational Health, IBM Research. “Our team is dedicated to this research and we continue to search for new ways to improve people’s health around the world through innovation and invention.”

One of the research areas of the Center for Computational Health at IBM Thomas J. Watson Research Center is translational informatics, which focuses on the development of novel techniques to extract insights and knowledge from biological and clinical data to support biological scientists, clinicians, and patients.

IBM has been working in this area for several years, and has developed a suite of advanced machine learning tools as well as computational models and platforms that can be used to derive insights from a wide variety of data sources  (e.g. pharmacological knowledge bases) to help improve the efficiency and effectiveness of drug discovery and development. These methodologies have been applied to many specific use cases including drug repurposing (i.e. helping to find new uses for existing drugs in the market), indication expansion (i.e. helping to identify potential new indications for drugs still in various stages of a development pipeline), drug safety (i.e. helping to detect and predict a drug’s safety profiles) and personalized medicine (e.g. personalized efficacy/safety profile predictions).

Related Articles Read More >

New nanopore sensor paves the way for fast, accurate, low-cost DNA sequencing
E. coli makes Tylenol from plastic waste
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Probiotics power a bioresorbable battery that can run from 4 to 100+ minutes
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE