Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Imaging nanoscale polarization in ferroelectrics with coherent X-rays

By R&D Editors | May 7, 2013

Stripe domain polarization map from X-ray Bragg projection ptychography phase reconstruction of a PbTiO3 thin film.Seeing the fine-scale properties of materials relevant to nanotechnology is a prominent challenge that currently can be met only under ideal conditions. Coherent X-ray imaging promises to greatly expand the range of materials and environments in which these important properties can be observed.

Users from Argonne’s Materials Science and Nanoscience & Technology divisions, in collaboration with the X-Ray Microscopy Group at the Center for Nanoscale Materials and researchers from the Advanced Photon Source, KAIST, Northern Illinois University, and the University of Melbourne, have reported the development of a new X-ray imaging technique, coherent X-ray Bragg projection ptychography, and its application to the study of nanoscale structures in ferroelectric thin films.

Under certain conditions, ferroelectric thin films (used, for example, in specialized computer memories) form networks of nanoscale domains with distinct local polarizations that are difficult to image because their properties are controlled by the film’s surrounding environment. Noninvasive visualization of these polar domains under realistic boundary conditions is key to the continued development of ferroelectric devices.

The Bragg ptychography method employs a highly penetrating nanofocused X-ray beam to create spatially overlapping coherent diffraction images, which, in this study, were used to visualize nanoscale domain polarization in an epitaxially strained ferroelectric thin film of PbTiO3. With a demonstrated spatial resolution of less than six nanometers, this new quantitative imaging technique paves the way for the visualization of domain morphology and behavior inside ferroelectric heterostructures under relevant conditions.

Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

Source: Argonne National Laboratory

 

Related Articles Read More >

U.S.–China pause eases rare-earth shock risk, but supply security questions remain
Materials driving the next phase in semiconductor performance
An easier way to separate rare earth elements
ORNL named on 20 R&D 100 Awards, including carbon-capture and AM tools
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE