Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

In situ bandgap tuning of graphene oxide

By R&D Editors | January 7, 2014

Figure 1 (left): A device structure for tuning the band-gap of graphene oxide; Figure 2 (right): The crystalline structure of graphene oxide, in which oxygen atoms (O) are bonded to the honeycomb graphene structure composed of carbon atoms.A research group led by Dr. Takashi Tsuchiya, Dr. Kazuya Terabe, and Dr. Masakazu Aono of the International Center for Materials Nanoarchitectonics (MANA) at Japan’s National Institute for Materials Science (NIMS) has succeeded in in situ bandgap tuning of graphene oxide. This advance will be a key step toward developing high-performance nanoscale devices using extremely thin graphene oxide membranes.

Graphene is expected to be a “post-silicon” material used for making next-generation nanoscale electronic devices and circuits. However, it is a carbon material, which means it has metal conductivity but lacks a bandgap. This property has been an obstacle to constructing electronic devices with this material. Although creating and tuning a bandgap in situ using external voltage has been proposed, this approach is volatile in that the tuned bandgap is lost when the supply of external voltage is stopped.

The research group at NIMS developed a method for creating a bandgap by changing the bonding state of carbon atoms that compose graphene through reversible absorption and desorption of oxygen atoms on the graphene, and tuning the bandgap in situ. This method enables bandgap tuning in a non-volatile manner; the tuned bandgap continues to exist even when voltage supply is stopped. In order to control absorption and desorption of oxygen atoms on the graphene, the group used solid electrolytes in which hydrogen ions can move, thereby causing electrochemical reactions between oxygen atoms, which are chemically bonded to the graphene, and hydrogen ions.

This bandgap tuning method will be a key step toward developing non-volatile switching devices and other high-performance nanoelectronics devices using graphene. It will also be available as an effective tool to search and control properties of diamond as well as new carbon materials including carbon nanotubes and fullerenes.

In Situ and Non-volatile Bandgap Tuning of Multilayer Graphene Oxide in an All-Solid-State Electric Double-Layer Transistor

Source: National Institute for Materials Science

 

Related Articles Read More >

KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
KATRIN inauguration photo form 2018
Neutrinos pinned below 0.45 eV; KATRIN halves the particle’s mass ceiling
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE