Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Ink with Carbon Nanodots Luminesces via 3 Different Mechanisms

By R&D Editors | May 5, 2016

​Banknotes, documents, branded products, and sensitive goods like pharmaceuticals or technical components are often marked to distinguish them from imitations. However, some counterfeiters have learned to copy conventional fluorescent tags. In the journal Angewandte Chemie, Chinese scientists have now introduced a new, exceptional anti-counterfeit ink made with carbon nanodots. Their ingenious composite material emits three different types of luminescence.

A material that emits light in three different ways at room temperature would be a first. The team led by Hengwei Lin at the Ningbo Institute of Materials Technology & Engineering of Chinese Academy of Sciences, the University of Chongqing, and Southeast University in Nanjing, has successfully produced such a substance based on carbon nanodots—luminescent nanomaterials, which have attracted much attention in recent years due to their unique optical properties and extremely low toxicity.

The researchers used a facile process to make carbon nanodots from m-phenylenediamine. These were then dispersed in water with polyvinyl alcohol and dispensed as ink from a gel pen onto a banknote and a document. After drying, the result was a transparent film of carbon nanodots in a polyvinyl alcohol matrix. This film is colorless under ordinary light, but has three tricks up its sleeve: 1) Irradiation with a UV lamp (365 nm) causes the mark to emit blue light (photoluminescence); 2) the UV irradiation also results in a green afterglow that continues for several seconds after the UV lamp is switched off (room temperature phosphorescence); and 3) irradiation with an infrared femtosecond pulse laser (800 nm) induces a blue-green glow (two-photon luminescence).

Photoluminescence is a phenomenon that is widely observed. Irradiation with UV light catapults electrons into a higher energy level. As the electrons return to the ground state, a portion of the energy is re-emitted as visible light. Two-photon luminescence is a significantly less common phenomenon in which two electrons are absorbed simultaneously (in this case in the infrared range) and jumps to a higher level. From this higher level, the electron can return directly to the ground state by emitting light of a shorter wavelength (in the visible range).

Phosphorescence at room temperature is especially rare. It involves a delay in the release of the absorbed energy because quantum mechanically “forbidden”—and therefore unlikely—electronic transitions are involved. The scientists determined that nitrogen-containing groups on the surface of the carbon nanodots are critical to this observed phosphorescence. The embedding of the nanodots in the polyvinyl alcohol matrix is also important, because it inhibits intramolecular motion that works against the phosphorescence.

 

Related Articles Read More >

New flexible plastic without ‘forever’ chemicals for wearable electronics
SandboxAQ’s SAIR dataset turns 5.2 M protein‑ligand structures into ground‑truth fuel for AI
Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE