Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Innovative 3D-Printed Bacteria Creates Graphene Samples

By American Chemical Society | March 24, 2017

Image: American Chemical Society

A team of researchers at Delft University of Technology has developed a means for 3D printing a gel containing bacteria onto a base to create materials in a novel way. In their paper published in the journal ACS Synthetic Biology, the team describes their technique and how they used it to simulate a process for creating small graphene samples.

Bacteria has been used for a long time to create chemicals such as antibiotics, and more recently, bacteria have been found to reduce graphene oxide to graphene — the super-material that has so many scientists excited about its potential. In this new effort, the researchers have found a way to use an ordinary 3D printer to print bacteria containing material onto a base, which allows it to be used in unique ways.

To 3D print bacteria, the researchers modified an off-the-shelf 3D printer, removing its heating element (most 3D printers work by melting the ink which hardens quickly after being ejected from a nozzle). They mixed bacteria with a gel and used it as their ink, which they printed onto an object where it solidified due to interactions with a material on its surface.

To test their technique, the team used E. coli and a gel made from algae as an ink. The ink was printed onto a dish partly covered with calcium ions, which caused the gel to solidify without killing the bacteria. The experiment suggested that it should be possible to use the gel to place graphene-reducing, 1 millimeter-wide lines of Shewanella oneidensis bacteria in a solid form onto a surface containing graphene oxide, thus creating tiny pathways of graphene. S. oneidensis had previously been found to reduce graphene oxide to graphene — a way to make graphene without using chemicals.

The researchers believe their printing technique could have other applications as well, including creating mother-of-pearl teeth, making plaque that causes tooth decay for research purposes, building materials using moon dust, or creating micro-lenses used in cameras or solar panels by emulating some animals that can make bioglass. They note also that because it can be done using inexpensive equipment, it opens the door to a huge number of science, technology, and industrial applications.

Source: American Chemical Society

Related Articles Read More >

Caltech team 3D-prints drug depots deep inside living tissue
What could make MXene a key to ultra-precise, additive-free 3D microprinting?
Industry 4.0 Modern Factory: Facility Operator Controls Workshop Production Line, Uses Computer with Screens Showing Complex UI of Machine Operation Processes, Controllers, Machinery Blueprints
Building the thinking factory: An additive exec on AI, automation, and the skills crisis
Red Bull and Mercedes F1 cars 3D illustration, 30 Aug, 2022, Texas, EUA
6 technologies pushing Formula 1’s engineering frontier
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE