Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Innovative Technique Mimics MRI to See What’s Ailing Batteries

By New York University | May 3, 2018

A team of chemists has developed an MRI-based technique that can quickly diagnose what ails certain types of batteries — from determining how much charge remains to detecting internal defects — without opening them up.

“The use of alternative energy and electrically powered vehicles will further increase the demand for better and safer batteries,” observes Alexej Jerschow, a professor in New York University’s Department of Chemistry, who led the research team. “However, there are currently only a very limited set of tools available to diagnose a battery’s health without destroying the battery — our non-invasive technique offers a faster and more expansive method for making these assessments.”

The work, described in the journal Nature Communications, also included Andrew Ilott, an NYU post-doctoral fellow at the time of the study and now a research investigator at Brisol-Myers Squibb; Mohaddese Mohammadi, an NYU doctoral candidate; and Christopher Schauerman and Matthew Ganter, research scientists at the Rochester Institute of Technology.

“Ensuring cell quality and safety is paramount to the manufacturing process that can save companies significant cost and prevent catastrophic cell failures from occurring,” says Ganter, co-director of the RIT Battery Prototyping Center. 

“This work not only supports the battery industry as a whole, but also the growing energy storage ecosystem in New York,” adds Christopher Schauerman, co-director of the RIT Battery Prototyping Center.

The research focuses on rechargeable Lithium-ion (Li-ion) batteries, which are used in cell phones, laptops, and other electronics.

Notably, rechargeable batteries are at the heart of new technologies, including electric cars or storage for renewable energy sources.

However, recent malfunctions in hand-held devices and electric vehicles have highlighted the difficulties in designing batteries for these cutting-edge technologies. In addition, engineers often cannot determine the nature of defects or even impending battery failures without taking apart the device, which typically results in its destruction.

A team of chemists has developed an MRI-based technique that can quickly diagnose what ails certain types of batteries—from determining how much charge remains to detecting internal defects—without opening them up. Above is an illustration of measurement setup showing the cell and the holder with the detection medium (water in this case), and (d) showing both inserted within the magnet bore of an NMR magnet. Image: Courtesy of Andrew Ilott and Alexej Jerschow.

In general, magnetic resonance (MR) methods provide the ability to measure tiny changes in magnetic field maps and, as a result, create a picture of what lies inside a structure — for example, MRI (magnetic resonance imaging) can produce images of the human body’s organs in a non-invasive manner.

In their Nature Communications work, the scientists adopted a procedure similar to MRI. Here, they measured tiny magnetic field changes surrounding the battery’s electrochemical cells.

In their experiments, they examined Li-ion batteries in different states — various levels of charge (i.e., battery life) and conditions (i.e., some damaged and others not). Such cells were prepared by collaborators at RIT’s Battery Prototyping Center. With these cells, the NYU team was able to match magnetic field changes surrounding the batteries to different internal conditions, revealing state of charge and certain defects. These included bent and missing electrodes as well as small foreign objects in the cell, which are flaws that can occur during the normal manufacturing process.

“With future enhancements to this method, it could provide a powerful means of predicting battery failures and battery lifetimes as well as facilitate the development of next-generation high-performance, high-capacity, and long-lasting or fast-charging batteries,” adds Jerschow.

The research was supported by a grant from the National Science Foundation (CHE-1412064) and NYU’s Technology Acceleration and Commercialization award.

Jerschow and his NYU colleagues have also recently received a $150,000 grant from PowerBridgeNY, a New York State-backed accelerator that supports scientists and entrepreneurs to commercialize clean technologies, to continue to enhance this and related techniques.

Source: New York University

Related Articles Read More >

2025 R&D layoffs tracker tops 92,000
Efficiency first: Sandia’s new director balances AI drive with deterrent work
Ex-Google CEO details massive AI energy needs at House hearing, advocates for fusion and SMR R&D
Floating solar mats clean polluted water — and generate power
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE