Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Inorganic Biomaterials for Soft-Tissue Adhesion

By Okayama University | July 3, 2017

Dispersions containing hydroxyapatite (HAp) nanoparticles, dried and made into plates have outstanding adhesive properties, and are biocompatible and biodegradable. Experiments demonstrated the ability of the novel adhesive to glue various types of mouse soft tissue. Source: Okayama University

 Researchers at Okayama University describe in Acta Biomaterialia a new type of biocompatible adhesive material. The adhesive, made from nanoparticles of hydroxyapatite, glues both synthetic hydrogels and mouse soft tissue, providing a promising alternative to organic materials currently in use for clinical applications.

As an alternative to surgical stitching with suture, the practice of using adhesive organic materials for joining soft tissue has been around for decades. However, the currently used clinical adhesives often suffer from limited biocompatibility and/or sub-optimal adhesive strength. A team of researchers led by Takuya Matsumoto from Okayama University and colleagues has now identified a class of biocompatible–biodegradable compounds showing promising adhesion properties when applied to mouse soft tissues.

The scientists relied on the recent discovery that certain nanostructured materials display remarkable adhesiveness. For example, introducing a dispersion of silicon oxide nanoparticles between two hydrogels results in rapid adhesion of the hydrogels — an effect now developed further for industrial, non-clinical applications. In order to achieve the level of biocompatibility required for clinical usage, Matsumoto and colleagues experimented with nanoparticles of hydroxyapatite (HAp), an inorganic material found in human hard tissues such as bones and teeth. HAp-composites are routinely used for orthopedic and dental implants, as well as in tissue engineering. The researchers reckoned that dispersions of nanoparticulate HAp should behave as biocompatible adhesives — an idea they were able to confirm experimentally.

Matsumoto and colleagues first examined the effect of HAp-nanoparticle dispersions on the adhesion of synthetic hydrogels; the presence of HAp clearly enhanced the level of adhesion. Drying the dispersions — resulting in solid HAp ‘plates’ — increased the cohesion between the HAp nanoparticles, and using the plates as the adhesive agent then led to even better inter-hydrogel adhesion. The scientists then tested the HAp plates on different mouse soft tissues: muscle, lung, kidney and other tissues could be successfully glued together. An adhesion strength at least twice as large as obtained with a commercial organic glue was observed for mouse skin tissues.

The findings of Matsumoto and colleagues are not only relevant for developing new procedures for surgical-wound healing, but also for drug-delivery technologies — the potential of hydrogels as drug containers has long been recognized. In the words of the researchers: “our results will help not only in developing an efficient approach to close incised soft tissues, but also in finding novel ways to integrate soft tissues with synthetic hydrogels (such as drug reservoirs).”

Related Articles Read More >

Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE