Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Jump-starting mRNA, New Gatekeeper for Light, DNA Origami: ICYMI

By R&D Editors | May 31, 2016

In case you missed it (ICYMI), here are some of the stories that made headlines in the world of cleanrooms and nanotechnology in the past week.

MIT scientists developed a super-resolution imaging technique, using a combination of multi-colored lasers and mirrors, to visualize very tiny, transient phenomena, such as enzyme clustering on genes. Image: Jose-Luis Olivares/MITResearchers at MIT and the Howard Hughes Medical Institute have identified a hidden, ephemeral phenomenon in cells that may play a major role in jump-starting mRNA production and regulating gene transcription. In a paper published in the online journal eLife, the researchers report using a new super-resolution imaging technique they’ve developed, to see individual mRNA molecules coming out of a gene in a live cell. Using this same technique, they observed that, just before mRNA’s appearance, the enzyme RNA polymerase II (Pol II) gathers in clusters on the same gene for just a few brief seconds before scattering apart. When the researchers manipulated the enzyme clusters in such a way that they stayed together for longer periods of time, they found that the gene produced correspondingly more molecules of mRNA. Clusters of Pol II therefore may play a central role in triggering mRNA production and controlling gene transcription. 

A photograph (left) shows the experimental set-up used to confirm the existence of the Bloch wave resonance, which was first predicted theoretically. An illustration (right) shows the interior of the experimental device, called a hollow periodic waveguide, which consists of two corrugated metallic plates separated by a variable distance of about one inch, and the upper plate can slide with respect to the lower. When researchers shot microwaves between the plates through the air, they were able to control which wavelengths of microwaves were allowed through by varying the position of the upper plate. Image: Lab of Victor Pogrebnyak/University at BuffaloEngineers at University at Buffalo have discovered a new gatekeeper for light. Such a gatekeeper would enable powerful and unique capabilities in a wide range of electronic, optical and other applications, including those that rely on transistors or other components that switch on and off. The finding has to do with materials that are periodic, which means that they’re made up of parts or units that repeat. Crystals fall into this category, as do certain parts of the wings of butterflies, whose periodic structure helps give them color by reflecting specific colors of light. 

The boldfaced line, known as a spanning tree, follows the desired geometric shape, touching each vertex just once. A spanning-tree algorithm is used in the new DNA origami method to map out the proper routing path for the DNA strand.Finally, in new research appearing in the advance online edition of the journal Science, Arizona State University researcher Hao Yan and colleagues from MIT and Baylor College of Medicine describe a new method for designing geometric forms built from DNA. They present a novel variant on a technique known as DNA origami, in which the base-pairing properties of DNA are exploited for the construction of tiny structures in two and three dimensions. Yan’s collaborators at MIT, led by Mark Bathe, developed a computer algorithm to design DNA nanostructures by only inputting a target shape. They engineered a software platform that can compute and output necessary DNA strands to form designer architectures. Formation of these structures were then systematically characterized and confirmed experimentally at the three institutes.

Related Articles Read More >

Probiotics power a bioresorbable battery that can run from 4 to 100+ minutes
Korean engineers show off ultra-light prosthetic hand with single-motor thumb
2025 R&D layoffs tracker tops 92,000
Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE