Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Lasers Hit the Pause Button on Boiling Liquids

By R&D Editors | February 24, 2016

A 3D schematic of a vapor bubble on a heated surface in a pool of liquid depicting the three-phase contact lineGather your patience and put the old “a watched pot never boils” saying to the test. The experience might rival watching paint dry, but of course the water will eventually begin to boil. When it does, you’ll see a flurry of bubbles form and quickly rise to the surface of the water. Once it kicks in, it builds at a furious pace and quickly creates a roiling cauldron on your stovetop. Time to add the pasta.

People have been boiling water to make dinner for ages, but it is also used in our refrigerators and even in the international space station as a method for cooling its systems. Ninety percent of all electricity in the U.S. is generated with steam turbines that require boiling to make the steam. With so many uses and over five decades of research, it is hard to believe that there are any stones left unturned in our understanding of boiling. Yet, as with all things, there is always room to learn more. The formation of bubbles in boiling is not completely understood.

The boiling process is largely driven by the dynamics of a very thin liquid film present at the base of each vapor bubble. Researchers have always found it challenging to study this area in the real world simply because it’s so hard to get a good look at. Bubbles form in unpredictable locations during boiling, and once they do they are fleeting — leaving the heated surface immediately.

Until now. Using a focused laser beam to essentially hit the pause button on boiling, Assistant Professor of Mechanical and Aerospace Engineering Shalabh Maroo’s research group and collaborators at the National Institute of Standards and Technology and Rensselaer Polytechnic Institute have created a single vapor bubble in a pool of liquid that can remain stable on a surface for hours, instead of milliseconds.

This method gives researchers the time necessary to microscopically study vapor bubbles and determine ways to optimize the boiling process — maximizing the amount of heat removal with a minimal rise in surface temperature. Maroo envisions that it will also open the door for advancements in many heat transfer systems.

“With this technique, we are able to analyze the fundamentals of boiling,” says Maroo. “The new understanding is going to help researchers design surface structures to achieve desired heat transfer, accurately predict as well as enhance boiling in outer space, where lack of gravity causes bubbles to stay stationary on a heated surface, and create next-generation technology for thermal management in electronics.”

Maroo’s work has been published in its entirety in Nature Publishing Group’s high-impact journal, Scientific Reports. Within, Maroo elaborates on his methods and scientific achievements of this research, which include the formation and analysis of a steady state bubble on hydrophilic (water-loving) and hydrophobic (water-repelling) surfaces with degassed and regular (containing dissolved air) water; in-situ imaging of the contact line region to measure the contact angle of a vapor bubble and analysis to determine the upper limit of heat transfer coefficient possible in nucleate boiling, which is obtained using experimental measurements of the microlayer (the thin liquid film).

This research is supported by the National Science Foundation. An Zou, who was Maroo’s Ph.D. student and first author of the published paper, successfully graduated with his Ph.D. and is currently a post-doc at University of Michigan.

Source: Syracuse University 

Related Articles Read More >

Illustration of ultracold atoms (gold) flowing frictionlessly along a laser boundary (green), representing the quantum phenomenon of edge states.
MIT physicists directly observe frictionless ‘edge state’ flow in ultracold atoms, offering a glimpse of super-efficient electronics
NTT Research scientist in cleanroom suit working on advanced photonic equipment
NTT Research bets light-based computing can tackles AI’s energy crisis
Scientists claim to generate world’s strongest terahertz radiation
SLAC fires up the world’s most powerful X-ray laser: LCLS-II ushers in a new era of science
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE