Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Lonestar4 aids Ebola Vaccine Trial Simulation and Analysis

By R&D Editors | June 3, 2015

Ebola candidate vaccine is readied for frontline worker study in Sierra Leone. After using the Lonestar4 supercomputer at the Texas Advanced Computing Center to fit 500 million models, researchers found that changing the vaccine study design from the approach used originally proposed by the CDC would lead to better information about the effectiveness of the vaccine.As the current Ebola outbreak wanes, scientists have to make the most of every opportunity to prepare for future outbreaks. One such opportunity involves the identification of a safe and effective Ebola vaccine. Texas supercomputers have aided researchers in modeling which types of clinical trials will provide the best information. That’s according to University of Texas at Austin researchers Steve Bellan and Lauren Meyers, who are studying Ebola vaccine trials with the U.S. Centers for Disease Control and Prevention (CDC).

Ebola vaccine trials are underway in Guinea and Liberia, two of the three hardest-hit countries in the ongoing epidemic, and the CDC just initiated a vaccine trial in Sierra Leone.

The researchers found that changing the vaccine study design from the approach used originally proposed by the CDC would lead to better information about the effectiveness of the vaccine. The CDC is, in fact, using the phased-rollout randomized controlled trial recommended in the paper. Ebola has declined at different rates throughout Sierra Leone, which could impact the findings of a vaccine study.

The scientists’ results, published April 14 in The Lancet Infectious Diseases, show that the “stepped wedge” trial design originally planned would have been less likely to provide clear information than the phased-rollout randomized controlled trial that the CDC now plans to use. They also found that the stepped wedge design would not have provided any of the ethical advantages that originally motivated this design.

The University of Texas at Austin research team includes Professor Lauren Meyers, Postdoctoral Researcher Steve Bellan, and graduate student Spencer Fox, as well as experts from the CDC, University of Florida, Gainesville, McMaster University in Canada, Yale University, Monash University in Australia, and University of California, San Francisco.

From a computing standpoint, the researchers had to simulate and analyze data several thousand times for each scenario to see how effective a trial design was at detecting whether a vaccine did or did not work. “We considered 2,000 simulations for 300 scenarios, a total of 600,000 simulations, fitting 800 statistical models to each of these simulations. This means that we used the Lonestar4 supercomputer at the Texas Advanced Computing Center to fit 500 million models,” says Bellan of the Center for Computational Biology and Bioinformatics at UT Austin.

“If I hadn’t had an HPC system like Lonestar, I would not have been able to complete this research because of the sheer amount of computing time that this took, and Lonestar’s massive ability to parallelize and get things done quickly. Using my laptop would have taken years, and this is a timely project involving human health where you simply can’t wait months or years to get the results,” Bellan concluded.

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE