Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Make My Nanoparticles Decaf

By R&D Editors | July 23, 2015

A team of researchers from the University of Leicester and France’s G2ELab-CNRS in Grenoble have for the first time observed the growth of free nanoparticles in helium gas in a process similar to the decaffeination of coffee, providing new insights into the structure of nanoparticles.

Nanoparticles have a very large surface area compared with their volume and are often able to react very quickly. This makes them useful as catalysts in chemical reactions and they are often used in sports equipment, clothing, and sunscreens.

In a paper published by the Journal of Physical Chemistry Letters and funded by the Royal Society, The Leverhulme Trust, the British Council, and CONACYT, the teams from the University of Leicester’s Department of Physics and Astronomy and the CNRS in Grenoble measured how helium ions cluster with neutral helium atoms and grow into nanoparticles.

During the study they examined how helium ions drift through a cell filled with helium atoms. When the pressure of helium was increased the researchers observed a decrease in the mobility of the ions.

Dr. Klaus von Haeften from the University of Leicester’s Department of Physics and Astronomy, who has received a Visiting Professorship from the University Joseph Fourier, says, “We concluded that the increased pressure forced more and more helium atoms to bind to the ions gradually, until the clusters grew to nanometer-sized particles. This process continued until the nanoparticles reached the maximum size possible which also depended on the temperature.

“Further increase of the pressure was found to reduce the size, which we interpreted as compression. These size changes could then be followed in great detail. For low and moderate pressures the size changed rather rapidly whereas in the high pressure region the changes were slow.”

By analyzing how quickly the particle volume changed with pressure the researchers were able to investigate the structure of the nanoparticles.

Nelly Bonifaci from the G2ELab-CNRS says, “At low and moderate pressure the nanoparticles were much softer than solid helium and we concluded that they must be liquid. At high pressures they became progressively harder and eventually solid.”

von Haeften adds, “By choosing helium we were able to study a system of greatest possible purity and our results are therefore very precise. Similar processes occur in the decaffeination of coffee in high pressure carbon dioxide, in dry cleaning and in chemical manufacturing. In all these processes nanoparticles grow. By knowing their size we can much better understand these processes and improve them.”

This is the first time that researchers have been able to observe the growth of free nanoparticles in a large range of pressure in gaseous helium.

Frédéric Aitken from the G2ELab-CNRS adds, “Our work is an important benchmark for the research on the formation and size of nanoparticles.”

Release Date: July 23, 2015
Source: University of Leicester 

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE