Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Malaria’s Key Survival Protein Identified

By R&D Editors | February 10, 2010

Walter and Eliza Hall Institute researchers have identified a key protein used by the malaria parasite to transform human red blood cells, ensuring the parasite’s survival. Their discovery means researchers have a clear target against which to develop a new class of anti-malarial drugs that destroy the parasite.

Each year more than 400 million people contract malaria, and more than one million people, mostly children, die from the disease. The most lethal form of the disease is caused by the parasite Plasmodium falciparum, which invades red blood cells and drastically modifies them so it can survive.

Professor Alan Cowman, head of the institute’s Infection and Immunity division, said the parasite remodels the red blood cells by exporting hundreds of so-called ‘effector’ proteins into the cytoplasm of the red blood cell. “These are key virulence proteins that allow the parasite to survive in the human and hide from the human immune system,” Professor Cowman said.

“There has to be a mechanism that allows these effector proteins to be exported but until now we haven’t known what it is.”

Dr. Justin Boddey, Dr. Tony Hodder, Dr. Svenja Gunther, Dr. Andrew Pearce and Professor Cowman from the institute, in collaboration with Professor Richard Simpson, Dr. Heather Patsiouras and Dr. Eugene Kapp of the Ludwig Institute for Cancer Research, Professor Brendan Crabb and Paul Gilson at the Burnet Institute and Dr. Tania de Koning-Ward at Deakin University, have identified a protein called Plasmepsin V as being essential for effector proteins to be exported into the red blood cell.

Their research has been published today in the international journal Nature.

Professor Cowman said experimentation had shown that the action of Plasmepsin V on the effector proteins was the first step in priming the proteins to be exported beyond the parasite’s membrane into the red blood cell cytoplasm.

“Plasmepsin V is responsible for determining that all the hundreds of effector proteins are exported. If we could find drugs to block Plasmepsin V the malaria parasite would die,” he said.

Professor Cowman said because Plasmepsin V was a protease it was an attractive drug target.

“Drugs that target proteases have been very effective in combating HIV so, by analogy, drugs that impede the function of Plasmepsin V should also show promise,” he said.

Release Date: February 3, 2010
Source: Walter and Eliza Hall Institute 

 

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE