Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Mass Extinction’s Cause: A ‘Sick Earth’

By R&D Editors | September 30, 2006

Mass Extinction’s Cause: A ‘Sick Earth’

What really caused the largest mass extinction in Earth’s history? The Permian-Triassic extinction, as it is called, is not the one that wiped out the dinosaurs. Nor is there strong evidence for a meteorite strike, as in that famous event, though the possibility has not been ruled out. The most likely explanation for the disappearance of up to 90 percent of species 250 million years ago, said David Bottjer, is that “the earth got sick.” Bottjer, professor of earth sciences in the USC College of Letters, Arts and Sciences, leads a research group presenting several new pieces of the P-T extinction puzzle. Matthew Clapham, a recent Ph.D. graduate of Bottjer’s laboratory, has found that species diversity and environmental changes were “decoupled” long before the extinction. Conditions on the planet were deteriorating long before species began to die off, Bottjer said, casting doubt on the meteorite strike theory. “People in the past used to think this big mass extinction was like a car hitting a wall,” he said. Instead, Clapham’s interpretation of the geological record shows “millions of years of environmental stress.” Pedro Marenco, a doctoral student in Bottjer’s lab, has been testing a leading theory for the P-T extinction: that a warming of the earth and a slowdown in ocean circulation made it harder to replace the oxygen sucked out of the water by marine organisms. According to the theory, microbes would have saturated the water with hydrogen sulfide, a highly toxic chemical. For a mass extinction “you really needed a good killer, and [hydrogen sulfide] is really nasty stuff,” Bottjer said. Marenco has measured large changes in the concentration of sulfur isotopes that support the hydrogen sulfide theory.

Related Articles Read More >

Frontier supercomputer debuts as world’s fastest, breaking exascale barrier
R&D 100 winner of the day: Mochi: Customizable Data Navigation Tool
Siemens collaborates with Pasqal to research quantum applications in computer aided engineering, simulation and testing
Q-CTRL and The Paul Scherrer Institute partner to support the scale-up of quantum computers
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars