Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Mathematicians Reduce Big Data Using Ideas from Quantum Theory

By R&D Editors | April 23, 2015

The new method reduces computing power needed to process large amounts of multidimensional relational data by providing a simple technique of cutting down redundant layers of information, reducing the amount of data to be processed.A new technique of visualizing the complicated relationships between anything from Facebook users to proteins in a cell provides a simpler and cheaper method of making sense of large volumes of data.

Analyzing the large volumes of data gathered by modern businesses and public services is problematic. Traditionally, relationships between the different parts of a network have been represented as simple links, regardless of how many ways they can actually interact, potentially loosing precious information. Only recently a more general framework has been proposed to represent social, technological and biological systems as multilayer networks, piles of ‘layers’ with each one representing a different type of interaction. This approach allows a more comprehensive description of different real-world systems, from transportation networks to societies, but has the drawback of requiring more complex techniques for data analysis and representation.

A new method, developed by mathematicians at Queen Mary University of London (QMUL), and researchers at Universitat Rovira e Virgili in Tarragona (Spain), borrows from quantum mechanics’ well tested techniques for understanding the difference between two quantum states, and applies them to understanding which relationships in a system are similar enough to be considered redundant. This can drastically reduce the amount of information that has to be displayed and analyzed separately and make it easier to understand.

Read More: BIG DATA INSIGHTS: How to Accelerate Discovery in Medicine, Research, Government, Business & More

The new method also reduces computing power needed to process large amounts of multidimensional relational data by providing a simple technique of cutting down redundant layers of information, reducing the amount of data to be processed.

The researchers applied their method to several large publicly available data sets about the genetic interactions in a variety of animals, a terrorist network, scientific collaboration systems, worldwide food import-export networks, continental airline networks and the London Underground. It could also be used by businesses trying to more readily understand the interactions between their different locations or departments, by policymakers understanding how citizens use services or anywhere that there are large numbers of different interactions between things.

Dr. Vincenzo Nicosia, co-author of the paper from QMUL’s School of Mathematics, said: “We’ve been trying to find ways of simplifying the way big data is represented and processed and we were inspired by the way that the complex relationships in quantum theory are understood.

“With so much data being gathered by companies and governments nowadays, we hope this method will make it easier to analyze and make sense of it, as well as reducing computing costs by cutting down the amount of processing required to extract useful information.”

Citation: ‘Structural reducibility of multilayer networks’ by M. De Domenico, V. Nicosia, A. Arenas, V. Latora is published in Nature Communications.

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE