Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Metformin Effectiveness Depends on Glucose

By R&D Editors | October 24, 2013

A published online in the journal Cell Cycle shows that breast cancer cell growth, motility and aggression is promoted by excess glucose, as experienced by patients with diabetes and metabolic syndrome. (Source: Cell Cycle)A University of Colorado Cancer Center study published online in the journal Cell Cycle shows that breast cancer cell growth, motility and aggression is promoted by excess glucose, as experienced by patients with diabetes and metabolic syndrome. The study also shows that patients with high glucose may require higher doses of the drug metformin to achieve the same anti-cancer activity as patients with normal glucose levels.
 
Metformin, the most common first-line drug in the treatment of type-2 diabetes, has been shown in previous studies to reduce breast cancer risk, improve survival, and increase the effectiveness of chemotherapy. Numerous Phase 3 clinical trials are currently evaluating the benefits and best uses of metformin in breast cancer patients.
 
“We show that metformin works differently in high- compared to low-glucose conditions. Not only does it require a higher concentration of metformin to be active in high-glucose conditions, but we report that the drug regulates different genes within cancer cells at high as compared to normal glucose levels,” said Ann Thor, MD, CU Cancer Center investigator, Todd Professor of Pathology at the University of Colorado School of Medicine, and the study’s principal investigator.
 
The study evaluated the effects of metformin on 17 breast cancer cell lines representing each of the molecular subtypes of the disease, at varying glucose levels.
 
“Commonly, lab studies of metformin are performed with very high glucose concentrations – about 17 millimols of glucose per liter. But the average glucose level in healthy humans is only about one third of that dose – about 5 millimols per liter. And individuals with diabetes may have glucose at 10 millimols per liter. We wanted to study metformin activity under these conditions,” Thor said.
 
So the question was this: how would metformin perform in breast cancer cells grown at more realistic, human levels of glucose?
 
“Results show that when you drop glucose down to human levels, metformin has an even bigger effect at standard doses. When glucose is high you need more metformin to achieve the same results,” Thor said.
 
Thor also points out that skeptics of metformin treatment for cancer in general or breast cancer in particular frequently point to the high concentrations of metformin needed to create results in the laboratory.
 
“Our data helps to explain why higher doses of metformin are required to obtain anti-cancer effects when cancer cells are grown in the lab, as compared to its use in humans,” Thor said.
 
Interestingly, “it wasn’t simply that the metformin effectiveness went up as glucose came down, but that entirely new mechanisms of action were present at lower glucose levels,” Thor said.
 
Specifically, Thor and colleagues used RNA expression arrays to discover which genes were affected by metformin at high and low glucose concentrations. At high glucose concentrations, metformin primarily affected genes involved in metabolic processes and cell proliferation; at low glucose concentrations, metformin affected genes controlling cellular process and programmed cell death.
 
In addition to affecting the growth of breast cancer cells, Thor and colleagues show the drug decreases the ability of breast cancer cells to move within the body – a task necessary for the spread of the disease to other sites.
 
“An extension of this data implies that in breast cancer patients with diabetes or metabolic syndrome, metformin may less effective at the standard dose. To be effective, doctors may have to first explore glucose control or may have to use a higher dose of metformin,” Thor said.
 
 
Date: October 24, 2013
Source: University of Colorado Cancer Center 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE