Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Microbe efficiencies could make better fuel cells

By R&D Editors | June 9, 2011

Microbe efficiencies could make better fuel cells

Like mutual back-scratching, two common bacteria involved in what was thought to be only a marginally important relationship actually help each other thrive when grown together in bioreactors, Cornell scientists have discovered.

bioelectrochemical reactors

Bioelectrochemical reactors in the Angenent Lab.

Understanding this symbiotic relationship could lead to, for example, more efficient microbiology-based fuel cells or better methods for preventing such natural processes as rust corrosion.

The research was led by Largus Angenent, associate professor of biological and environmental engineering, and was published online June 2 by Energy and Environmental Science, a publication of the Royal Society of Chemistry.

To study the bacterial interactions, the scientists fed glucose into a bioelectrochemical reactor, which is a reactor in which bacteria on electrodes convert organic material into electricity.

The glucose fed the bacterium Enterobacter aerogenes, which, in turn, produced the product 2,3-butanediol. This became a food source for another bacterium, Pseudomonas aeruginosa.

In the meantime, the researchers discovered, Pseudomonas activity was upregulated, which in turn increased the presence and activity of Enterobacter. The result was a 14-fold increase in the electric current production from Enterobacter and Pseudomonas combined in the bioelectrochemical reactor, than by either microbe by itself.

The fermentation product 2,3-butanediol was the key stimulator for the mutually beneficial interactions between the two bacteria within a closed system bioelectrochemical reactor.

The work could lead to increased efficiency of microbial fuel cells by better understanding of microbial communities. The two bacteria studied also have wide-reaching implications. For example, Pseudomonas is a well-known human pathogen that resides in the lungs. Knowing that this pathogen does better when Enterobacter is present could lead to better therapies or preventative measures against bacterial illnesses, for example.

The paper’s first author was graduate student Arvind Venkataraman, who was involved in hypothesis development and designed and conducted the experiments. The work was supported by a National Science Foundation CAREER grant.

SOURCE

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE