Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Microbots Flex Their Muscles

By R&D Editors | November 14, 2014

In a step toward robots smaller than a grain of sand, University of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines.

So-called microbots would be handy in many areas, particularly medicine and manufacturing. But several challenges lie between current technologies and science fiction possibilities. Two of the big ones are building the ‘bots and making them mobile.

“We are inspired by ideas of microscopic robots,” says Michael Solomon, a professor of chemical engineering. “They could work together and go places that have never been possible before.”

Solomon and his group demonstrated that some gold plating and an alternating electric field can help oblong particles form chains that extend by roughly 36 percent when the electric field is on.

“What’s really important in the field of nanotechnology right now is not just assembling into structures, but assembling into structures that can change or shape-shift,” says Sharon Glotzer, the Stuart W. Churchill Professor of Chemical Engineering, whose team developed computer simulations that helped explain how the chains grew and operated.

The innovation that led to the shape-shifting, says Aayush Shah, a doctoral student in Solomon’s group, is the addition of the electric field to control the behavior of the particles.

“The particles are like children in a playground,” Shah said. “They do interesting things on their own, but it takes a headmaster to make them do interesting things together.”

The team started with particles similar to those found in paint, with diameters of about a hundredth the width of a strand of hair. They stretched these particles into football shapes and coated one side of each football with gold. The gilded halves attracted one another in slightly salty water—ideally about half the salt concentration in the sports drink Powerade. The more salt in the water, the stronger the attraction.

[video:http://youtu.be/85uZYZjRKYI]Shape-Shifting Micro Muscles Will Pump You Up | MconneX | MichEpedia

Left to their own devices, the particles formed short chains of overlapping pairs, averaging around 50 or 60 particles to a chain. When exposed to an alternating electric field, the chains seemed to add new particles indefinitely. But the real excitement was in the way that the chains stretched.

“We want them to work like little muscles,” Glotzer says. “You could imagine many of these fibers lining up with the field and producing locomotion by expanding and contracting.”

While the force generated by the fibers is about 1,000 times weaker than human muscle tissue per unit area, it may be enough for microbots.

“If we can get the chains to swarm together, we can get them to lift loads, move around, do things that biological muscles do,” Solomon says.

Minuscule, muscled robots may be many years away, but more immediately, the particles could enable electronics that rewire on demand.

“These chains are essentially wires, so you could assemble them into a circuit for reconfigurable electronics,” says Solomon.

The team is still investigating how the phenomenon works.

“We don’t fully understand why the chains extend, but we have some ideas,” says Benjamin Schultz, a graduate student in Glotzer’s group.

The study, appearing in the journal Nature Materials, is titled “Actuation of shape-memory colloidal fibres of Janus ellipsoids.” The research was supported by the U.S. Army Research Office, the Assistant Secretary of Defense for Research and Engineering, and the U.S. Department of Defense.

Solomon is also a professor of macromolecular science and engineering. Glotzer is also a professor of materials science and engineering, macromolecular science and engineering, physics and applied physics.

Release Date: November 10, 2014
Source: University of Michigan 

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE