New research by NASA, Rice University, and the University of Glasgow details the first solid evidence of why the sun’s atmosphere is 300 times hotter than its 10,340-degree Fahrenheit surface.
The answer, according to Rice astrophysicist Stephen Bradshaw and his colleagues, involves intermittent “nanoflares,” bursts of hot plasma in the corona that have a billion times less energy than regular flares but still reach temperatures of 18 million degrees Fahrenheit.
Despite being tiny by solar standards, each nanoflare “packs the wallop of a 10-megaton hydrogen bomb,” says principal investigator Jim Klimchuk, a solar scientist at NASA’s Goddard Space Flight Center in Maryland. The Goddard Space Flight Center is home to a Class 10,000 cleanroom. “Millions of them are going off every second across the sun, and collectively they heat the corona.”
The scientists delivered their results at the first Triennial Earth-Sun Summit in Indianapolis on April 28.
“Nanoflares have been so difficult to spot because the plasma they heat has a low initial density,” says Bradshaw, an assistant professor of physics and astronomy. “It doesn’t emit much radiation for us to detect and cools very quickly, so the signals don’t last long.”
Related aerospace story: Hawaii Telescope Plan for Volcano Still Simmering Controversy: http://www.laboratoryequipment.com/news/2015/04/hawaii-telescope-plan-volcano-still-simmering-controversy
NASA gathered the new evidence with sounding rockets, which launch instruments above the atmosphere on suborbital flights. A 15-minute flight in 2013 carried a spectrograph tuned to spot how much material is present at a given temperature. The spectrograph found unambiguous evidence for the presence of nanoflares in otherwise quiet regions of the corona.
X-ray images of the corona from rockets launched in 2012 and 2013 also saw evidence of the super-hot plasma.
Bradshaw, who recently earned a National Science Foundation CAREER award to continue his research of the sun’s atmosphere, used a sophisticated computational model to demonstrate why spotting signatures of the nanoflares has been so difficult and how the new evidence will help heliophysics researchers ultimately solve the coronal heating mystery.
What remains is the question of how the nanoflares accumulate so much energy before bursting.
“This work will help us to pin down the properties of nanoflares — the energy released, heating time and inter-event frequency — to provide clues and guide us toward identifying the mechanism that drives them,” Bradshaw says.
Release Date: May 1, 2015
Source: Rice University