Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Nanoprobes Hit Targets in Tumors

By R&D Editors | December 15, 2009

Tiny nanoprobes have shown to be effective in delivering cancer drugs more directly to tumor cells—mitigating the damage to nearby healthy cells—and Purdue University research has shown that the nanoprobes are getting the drugs to right cellular compartments.
Professor Joseph Irudayaraj and graduate student Jiji Chen, both in the Department of Agricultural and Biological Engineering, have found that the nanoprobes, or nanorods, when coated with the breast cancer drug Herceptin, are reaching the endosomes of cells, mimicking the delivery of the drug on its own. Endosomes perform a sorting function to deliver drugs and other substances to the appropriate locations.

“We have demonstrated the ability to track these nanoparticles in different cellular compartments of live cells and show where they collect quantitatively,” said Irudayaraj, whose results were published early online in the journal ACS Nano. “Our methods will allow us to calculate the quantities of a drug needed to treat a cancer cell because now we know how these nanoparticles are being distributed to different parts of the cell.”

The nanoprobes, which are about 1,000 times smaller than the diameter of a human hair, are made from gold and magnetic particles. An MRI machine can track the magnetic portions of the nanoprobes while a more sensitive microscopy process can detect the gold.

The nanoprobes were inserted into live human tumor cells during laboratory testing. Using fluorescent markers to differentiate organelles, or sub-units of cells, Irudayaraj’s group was able to determine the number of nanoprobes accumulating in the endosomes, lysosomes and membranes of those cells.

Cancer treatments often use high drug concentrations that damage healthy cells near a tumor. While Herceptin is attracted to and attaches to the proteins on the surface of breast cancer cells, healthy surrounding cells absorb some of the chemotherapy drugs through normal fluidic intake.

Irudayaraj said targeting only tumor cells with nanoprobes would require less drugs and mitigate the side effects of cancer chemotherapy drugs.

“Each nanoparticle acts like a deliverer of a mail package, or dose, of the drug directly to the appropriate location,” Irudayaraj said.

In Irudayaraj’s laboratory tests, endosomes received a major portion of the nanorods containing Herceptin. Lysosomes, which act like garbage collection units in cells and hinder a drug’s effectiveness, received a lower concentration of nanorods.

Irudayaraj said those percentages are similar to how cells distribute drugs through traditional treatments. Irudayaraj will next try to attach multiple drugs to a nanoparticle and track their distribution within cells. He also wants to determine the timing of a drug’s release from the nanoprobes after attaching to the tumor cells.

The research was funded through a Trask Grant and the Purdue Research Foundation.

Release date: December 14, 2009
Source: Purdue University 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE