Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Nanoscientists invent better etching technique

By R&D Editors | August 19, 2011

Argonne Etch Technique

Deep canyons can be etched into materials at the nanoscale with a new SIS-based lithography technique by Argonne National Laboratory scientists. Image: Argonne National Laboratory

Imagine
yourself nano-sized, standing on the edge of a soon-to-be computer chip. Down
shoots a beam of electrons, carving precise topography that is then etched the
depth of the Grand Canyon into the chip.

From the
perspective of scientists at the U.S. Department of Energy’s Argonne National
Laboratory, this improved form of etchingcould open the door to new technologies.

Argonne
nanoscientist Seth Darling and colleagues at Argonne’s
Center for Nanoscale Materials and Energy Systems Division say it has the
potential to revolutionize how patterns are transferred onto different
materials, paving a new approach for the next generation of energy, electronics,
and memory technologies.

The
innovation combines new tricks with an old technology.

One of the
biggest recent questions facing materials science has involved the development
of better techniques for high-resolution lithographies such as electron-beam,
or e-beam, lithography. E-beam lithography is used to manufacture the tiniest
of structures, including microelectronics and advanced sensors; beams of
electrons are part of a process that “prints” desired patterns into
the substance.

Transferring
patterns more deeply into materials would allow scientists to craft better
electronics.

To create
a pattern using e-beam lithography, researchers have conventionally traced a
pattern within a layer called a “resist,” which is then etched into the
underlying substrate.

Because
the resist is thin and fragile, an intermediate “hard mask” is generally
laid between the resist and the substrate. Ideally, the hard mask would stick to the substrate long
enough for the desired features to be etched and then be cleanly removed—though
the extra layer often results in blurriness, rough edges, and additional costs
and complications.

But over
the course of the past several years, Darling and his colleagues have developed
a technique called sequential infiltration synthesis (SIS). Another method of
building custom designs at the nanoscale level, SIS involves the controlled
growth of inorganic materials within polymer films. This means that scientists
can construct materials with unique properties and even with complex, 3D
geometries.

“With
SIS, we can take that thin, delicate resist film and make it robust by
infiltrating it with inorganic material,” Darling explains. “That
way, you don’t need an intermediate mask, so you get around all the problems
associated with that extra layer.”

Although
some resists might work better than others under certain conditions, no single
approach had yet demonstrated the ability to ingrain a pattern with the ease,
depth, and fidelity of the Argonne approach,
Darling says.

“It’s
possible we might be able to create very narrow features well over a micron
deep using only a very thin, SIS-enhanced etch mask, which from our perspective
would be a breakthrough capability,” he says.

By
combining sequential infiltration synthesis with block copolymers, molecules
that can assemble themselves into a variety of tunable nanostructures, this
technique can be extended to create even smaller features than are possible
using e-beam lithography. The key is to design a selective reaction between the
inorganic precursor molecules and one of the components in the block copolymer.

“This
opens a wide range of possibilities,” says Argonne
chemist Jeff Elam, who helped create the process. “You can imagine
applications for solar cells, electronics, filters, catalysts—all sorts of
different devices that require nanostructures, but also the functionality of
inorganic materials.”

“Hopefully,
our discovery gives scientists an extra advantage when it comes to creating
deeper patterns with higher resolution,” Darling says.

SOURCE

Related Articles Read More >

New flexible plastic without ‘forever’ chemicals for wearable electronics
SandboxAQ’s SAIR dataset turns 5.2 M protein‑ligand structures into ground‑truth fuel for AI
Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE