Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Nanosheets Line Up to Mimic Nature

By R&D Editors | March 6, 2015

The composite material has properties that vary with direction. Here, a RIKEN logo can be viewed clearly through the material from two directions, whereas the material is opaque when viewed orthogonally to the aligned titanate nanosheets. Reproduced, with permission, from Ref. 1 © 2015 M. Liu et al.A soft material that mimics natural cartilage in that it is easily deformed by shear forces in one direction yet resists compressive forces applied in other directions has been developed by a team led by scientists from the RIKEN Center for Emergent Matter Science.

Cartilage is the solid but pliable tissue that allows joints to move with very low friction, but it has been difficult to replicate artificially. “The functions of biological materials have been acquired through evolution over the course of millions of years,” explains Yasuhiro Ishida from the research team. “We hope to develop soft materials with functions similar or even superior to their natural counterparts.”

Ishida and his co-workers developed a hydrogel — a crosslinked polymer that entraps a large amount of water yet retains a relatively firm structure — containing titanate nanosheets. These nanosheets have a very large aspect ratio, being less than a nanometer thick but about 10,000 times wider, and the nanosheet surfaces are highly negatively charged. This charge gives rise to electrostatic repulsion between the sheets, causing them to disperse readily in the hydrogel.

When placed in a magnetic field, the titanate nanosheets align face-to-face, parallel to the magnetic field — an alignment that differs from that of other metal oxides. The ordering can then be fixed in place by the formation of a crosslinked hydrogel around the nanosheets. Although the alignment direction of the nanosheets can be confirmed using techniques such as transmittance spectroscopy and x-ray diffraction, the alignment is actually apparent to the naked eye — viewed along the direction of the applied magnetic field, the material is opaque, but from other directions it is highly transparent.

Materials design has often exploited attractive forces between oppositely charged components to improve material strength. The use of repulsive forces as in this titanate nanosheet hydrogel is rare but in this system affords some potentially useful applications, such as artificial cartilage.

“As people age,” explains Ishida, “their cartilage becomes weak, and once someone begins to have difficulty walking, they quickly lose other abilities. The mechanical properties of this new material mimic those of natural cartilage, tolerating heavy loads vertically, but deforming easily horizontally. This anisotropic behavior is also maintained for a long time in physiological saline.” To achieve the goal of developing a fully compatible artificial cartilage material, the research team is now working to improve the material’s mechanical toughness, anisotropy, and durability for long-term use.

Release Date: March 6, 2015
Source: RIKEN Research  

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE