Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Nanotech Biomarker Lights Up, Releases Anti-Cancer Drugs

By R&D Editors | November 19, 2014

Next generation biomarker detects tumor cells and delivers anti-cancer drugs.Nanyang Technological University in Singapore has invented a unique biomarker with two exceptional functions.

First, it lights up when it detects tumor cells to allow scientists to take a better look. And it can also release anti-cancer drugs at the same time to the specific cells.

This new biomarker, which has immense potential for drug development, is made from a nanophosphor particle, ten thousand times smaller than a grain of sand.

NTU associate professors Zhang Qichun and Joachim Loo have found a way to make the nanoparticle light up when it is activated by near-infrared light emitted by an imaging device and only if tumor cells release small signaling molecules.

Prof Zhang says the use of near-infrared light, which is invisible to the human eye, is unique as most imaging techniques use ultraviolet light or visible light.

“Near-infrared light can penetrate 3 to 4 cm beyond the skin to deep tissue, much deeper than visible light. It also does not cause any damage to healthy cells, unlike ultraviolet or visible light,” adds Prof Zhang, a materials expert.

“Visible light also causes photo bleaching, which is the destruction of the fluorescence dye that reduces the amount of time doctors and scientists have to image a tissue sample. Our new biomarker has effectively eliminated such key limitations which exist in existing biological markers.”

The breakthrough has resulted in two papers published in Small, one of the world’s top scientific journals for material science and nanotechnology.

Prof Loo says their new biomarker can also release anti-cancer drugs by creating a layer of coating loaded with drugs on the outside of the nanoparticle.  The drugs are released when the biomarker lights up in response to the near-infrared light.

“This is the first time we are able to do bio-imaging, and potentially target the delivery of drugs at the same time, as proven in small animal tests,” says Professor Loo, a nanotechnology and bioimaging expert. “Our breakthrough will open up new doors in the various fields of nanomedicine, bioimaging, and cancer therapeutics.”

The new biomarker also has other advantages. It has twice the contrast of conventional dyes and is able to emit up to three different colors of light. This means that it allows for better differentiation between healthy cells and tumor cells.

Unlike other new biomarkers used for imaging such as quantum dots, the NTU biomarker has also been shown to be non-toxic, staying in the body for up to two days before it is passed out harmlessly.

Moving forward, the team from NTU’s School of Materials Science and Engineering will be looking to load multiple layers of drugs into their biomarker. If successful, doctors will be able to release sequentially two or more drugs through the biomarker.  This will benefit cancer patients as there will be fewer side effects due to the small doses administered and also higher efficacy as the biomarker has the ability to accurately target tumor cells.

The project, which took three years, is jointly funded by NTU, the Ministry of Education, and the National Research Foundation, Singapore.

The discovery is an important contribution to the University’s research effort in Future Healthcare, which is one of NTU’s Five Peaks of Excellence – interdisciplinary research areas in which the university aims to make a global mark in. The other four peaks include Sustainable Earth, New Media, the East-West knowledge hub, and Innovation Asia.

Release Date: November 19, 2014
Source: Nanyang Technological University 

Related Articles Read More >

New dangers in the woods — and the hope that research offers us
Novel mass spectrometry solution simplifies insight gathering into macromolecular complexes
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Thermo Fisher Scientific autoimmune-testing instruments now available in the U.S.
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars