Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

NASA Spacecraft Explores Climate Change on Mars

By R&D Editors | October 17, 2014

Artist's rendering of the MAVEN spacecraft in orbit around Mars. Courtesy of NASA.NASA’s MAVEN spacecraft settled into its planned orbit around Mars on Sept. 21 and is already sending back data about the upper atmosphere, according to University of California, Berkeley, space scientist Davin Larson.

MAVEN, which stands for Mars Atmosphere and Volatile Evolution, was housed in a Kennedy Center cleanroom before being launched. Assembled by Lockheed Martin in Denver, Colo., MAVEN was blasted with sound waves, shaken on a vibration table, even put through a thermal vacuum test using liquid nitrogen to simulate the cold of space and hot lamps to mimic the sun – all to ensure it was ready for the extremes of liftoff and spaceflight.

Larson, who led the development of the spacecraft’s Solar Energetic Particles instrument, participated in a NASA media teleconference Oct. 14 to share what the MAVEN spacecraft has seen in its first few weeks at Mars.

“The main message is that it’s working,” says Larson, who is a researcher at UC Berkeley’s Space Sciences Laboratory. “We’ve already detected energetic particles from the sun.”

The SEP instrument detected its first incoming burst of energetic particles on Sept. 29, caused by a solar flare and coronal mass ejection from the sun three days earlier.

MAVEN rocketed into space in November 2013 and spent 10 months looping through the solar system before its arrival and orbit insertion around Mars. Its mission: to explore the upper part of the atmosphere and discover why Mars lost most of its atmosphere, including hydrogen and oxygen, billions of years ago. It is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere to help scientists understand climate change over the Red Planet’s history.

Theory predicts there are many mechanisms that result in atmospheric loss, Larson says. One mechanism is that solar energetic particles, primarily protons or hydrogen ions originating from the sun, are partly responsible for stripping away the atmosphere.

“Solar energetic particles strike the upper atmosphere of Mars, ionizing the atoms and leading almost immediately to their escape from Mars,” Larson says.

The SEP instrument observed its first burst of energetic particles on Sept. 29 from a coronal mass ejection three days earlier on the sun. The top panel shows the distance between MAVEN and Mars as a function of time. The bottom panel shows energetic ion flux as a function of particle energy (vertical axis) and time (horizontal axis). Image by Davin Larson, SSL, UC Berkeley.The SEP instrument will measure the flux or intensity of solar energetic particles, while another instrument aboard MAVEN will measure the corona of escaped hydrogen and oxygen atoms around Mars, expecting to see the corona increase after an intense rain of energetic particles.

Models suggest that “the sun was much, much more active in the past with stronger and more frequent SEP events,” Larson said during the media briefing. “By understanding how the atmosphere is affected by SEPs today, we can calculate what role SEPs played in the evolution of Mars atmosphere.”

What they learn also could help space scientists understand why some planets, like Earth and Venus, still have thick atmospheres, while others, like Mars and Mercury, do not.

Other participants in the briefing were Elsayed Talaat, MAVEN program scientist at NASA Headquarters in Washington, D.C.; Bruce Jakosky, MAVEN principal investigator at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder; Mike Chaffin, Remote Sensing Team member at CU-Boulder; and Justin Deighan, CU-Boulder Remote Sensing Team member.

Release Date: October 16, 2014
Source: UC Berkeley 

Related Articles Read More >

Powering the moon: Sandia researchers design microgrid for future lunar base
R&D collaborations looking to build expertise, in this week’s R&D power index
R&D 100 winner of the day: Traffic Flow Impact (TFI) Tool
Greater than expected growth in fourth quarter, in this week’s R&D power index
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars