Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

NASA’s Curiosity Rover Scoping Out Next Study Area

By R&D Editors | April 4, 2014

NASA's Curiosity Mars rover recorded this view of various rock types at waypoint called "the Kimberley" shortly after arriving at the location on April 2, 2014. The site offers a diversity of rock types exposed close together in a decipherable geological relationship to each other. Image Credit: NASA/JPL-CaltechOn April 2, NASA’s Curiosity Mars rover drove the last 98 feet needed to arrive at a site planned since early 2013 as a destination for studying rock clues about ancient environments that may have been favorable for life.

The rover reached a vantage point for its cameras to survey four different types of rock intersecting in an area called “the Kimberley,” after a region of western Australia.

“This is the spot on the map we’ve been headed for, on a little rise that gives us a great view for context imaging of the outcrops at the Kimberley,” says Melissa Rice of the California Institute of Technology, Pasadena. Rice is the science planning lead for what are expected to be several weeks of observations, sample-drilling and onboard laboratory analysis of the area’s rocks.

With arrival at this location, Curiosity has driven at total of 3.8 miles since landing inside Gale Crater on Mars in August 2012.

The mission’s investigations at the Kimberley are planned as the most extensive since Curiosity spent the first half of 2013 in an area called Yellowknife Bay. At Yellowknife Bay, the one-ton rover examined the first samples ever drilled from rocks on Mars and found the signature of an ancient lakebed environment providing chemical ingredients and energy necessary for life.

At the Kimberley and, later, at outcrops on the slope of Mount Sharp inside Gale Crater, researchers plan to use Curiosity’s science instruments to learn more about habitable past conditions and environmental changes.

NASA’s Jet Propulsion Laboratory built Curiosity and manages the mission for NASA’s Science Mission Directorate, Wash. The Mars Science Laboratory, as Curiosity is formally known, was fully integrated and tested in the High Bay 1 cleanroom at the Jet Propulsion Laboratory in Pasadena, Calif. The JPL is managed for NASA by the California Institute of Technology. The Spacecraft Assembly Facility is a Class 10,000 ISO 7 cleanroom with horizontal airflow and return.

Release Date: April 3, 2014
Source: NASA 

Related Articles Read More >

Sonar Screen For Submarines And Ships. Radar Sonar With Object On Map. Futuristic HUD Navigation monitor
Pentagon places big bets on frontier AI, quantum sensing and next-gen avionics in nearly $3 billion in defense technology contracts 
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Trump lifts 50-year supersonic ban, paving way for 3.5-hour New York–London trips
Europa’s lost decade: What happens to $5 billion‑plus in planetary R&D when missions die?
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE