Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

NASA’s Spitzer Uncovers Hints of Mega Solar Systems

By R&D Editors | January 31, 2006

NASA’s Spitzer Uncovers Hints of Mega Solar Systems

NASA’s Spitzer Space Telescope has identified two huge “hypergiant” stars circled by monstrous disks of what might be planet-forming dust. The findings surprised astronomers because stars as big as these were thought to be inhospitable to planets. “These extremely massive stars are tremendously hot and bright and have very strong winds, making the job of building planets difficult,” said Joel Kastner of the Rochester

click the image to enlarge
This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Image courtesy of NASA/JPL-Caltech

Institute of Technology in New York. “Our data suggest that the planet-forming process may be hardier than previously believed, occurring around even the most massive stars that nature produces.” Dusty disks around stars are thought to be signposts for present or future planetary systems. Our own sun is orbited by a thin disk of planetary debris, called the Kuiper Belt, which includes dust, comets and larger bodies similar to Pluto. Last year, astronomers using Spitzer reported finding a dust disk around a miniature star, or brown dwarf, with only eight one-thousandths the mass of the sun. Disks have also been spotted before around stars five times more massive than the sun. The new Spitzer results expand the range of stars that sport disks to include the “extra large.” The infrared telescope detected enormous amounts of dust around two positively plump stars, R 66 and R 126, located in the Milky Way’s nearest neighbor galaxy, the Large Magellanic Cloud. Called hypergiants, these blazing hot stars are aging descendents of the most massive class of stars, referred to as “O” stars. They are 30 and 70 times the mass of the sun, respectively. If a hypergiant were located at the sun’s position in our solar system, all the inner planets, including Earth, would fit comfortably within its circumference. Astronomers estimate that the stars’ disks are also bloated, spreading all the way out to an orbit about 60 times more distant than Pluto’s around the sun. The disks are probably loaded with about ten times as much mass as is contained in the Kuiper Belt. Kastner and his colleagues say these dusty structures might represent the first or last steps of the planet-forming process. If the latter, then the disks can be thought of as enlarged versions of our Kuiper Belt. “These disks may be well-populated with comets and other larger bodies called planetesimals,” said Kastner. “They might be thought of as Kuiper Belts on steroids.” Spitzer detected the disks during a survey of 60 bright stars thought to be wrapped in spherical cocoons of dust. According to Kastner, R 66 and R 126 “stuck out like sore thumbs” because their light signatures, or spectra, indicated the presence of flattened disks. He and his team believe these disks whirl around the hypergiant stars, but they say it is possible the giant disks orbit unseen, slightly smaller companion stars. A close inspection of the dust making up the disks revealed the presence of sand-like planetary building blocks called silicates. In addition, the disk around R 66 showed signs of dust clumping in the form of silicate crystals and larger dust grains. Such clumping can be a significant step in the construction of planets. Stars as massive as R 66 and R 126 don’t live very long. They burn through all of their nuclear fuel in only a few million years, and go out with a bang, in fiery explosions called supernovae. Their short life spans don’t leave much time for planets, or life, to evolve. Any planets that might crop up would probably be destroyed when the stars blast apart. “We do not know if planets like those in our solar system are able to form in the highly energetic, dynamic environment of these massive stars, but if they could, their existence would be a short and exciting one,” said Charles Beichman, an astronomer at NASA’s Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena.

Related Articles Read More >

Five simple ways to improve project management processes for your R&D team
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Groundbreaking research could help paramedics save the lives of pedestrian casualties 
R&D 100 winner of the day: Slycat
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars