Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Natural affinities may have set stage for life to ignite

By R&D Editors | July 31, 2013

A computer graphic of an RNA molecule. Image: Richard FeldmannThe chemical components crucial to the start of life on Earth may have primed and protected each other in never-before-realized ways, according to new research led by Univ. of Washington (UW) scientists.

It could mean a simpler scenario for how that first spark of life came about on the planet, according to Sarah Keller, UW prof. of chemistry, and Roy Black, UW affiliate prof. of bioengineering, co-authors of a paper published online in the Proceedings of the National Academy of Sciences.

Scientists have long thought that life started when the right combination of bases and sugars produced self-replicating ribonucleic acid, or RNA, inside a rudimentary “cell” composed of fatty acids. Under the right conditions, fatty acids naturally form into bag-like structures similar to today’s cell membranes.

In testing one of the fatty acids representative of those found before life began—decanoic acid—the scientists discovered that the four bases in RNA bound more readily to the decanoic acid than did the other seven bases tested.

By concentrating more of the bases and sugar that are the building blocks of RNA, the system would have been primed for the next steps, reactions that led to RNA inside a bag.

“The bag is the easy part. Making RNA from scratch is very hard,” Keller said. “If the parts that come together to make RNA happen to preferentially stick to the surfaces of bags, then everything gets easier.”

The scientists also discovered a second, mutually reinforcing mechanism: The same bases of RNA that preferentially stuck to the fatty acid also protected the bags from disruptive effects of salty seawater. Salt causes the fatty acid bags to clump together instead of remaining as individual “cells.”

The researchers found that several sugars also give protective benefit but the sugar from RNA, ribose, is more effective than glucose or even xylose, a sugar remarkably similar to ribose, except its components are arranged differently.

The ability of the building blocks of RNA to stabilize the fatty acid bags simplifies one part of the puzzle of how life started, Keller said.

“Taken together, these findings yield mutually reinforcing mechanisms of adsorption, concentration and stabilization that could have driven the emergence of primitive cells,” she said.

Black, lead author of the paper, originated the ideas behind the work. A retired biochemist with Amgen Inc., Black contributed funding for the work to Keller’s laboratory—the work also received National Science Foundation funding—and became a UW affiliate professor volunteering in the Keller laboratory.

“I think that a pretty common story is that some young hotshot comes to UW to start her or his career and does a risky experiment that uncovers new fundamental science,” Keller said. “Here we have an older hotshot who came to UW at the end of his Amgen career to do a risky experiment that uncovers new fundamental science.

“I think the story also emphasizes that people don’t become scientists just because it is a good job—they do it because they love it,” she said. “Roy worked for a year and a half straight, volunteering his time to UW on something he didn’t get paid for, just for the joy and the curiosity.”

Source: Univ. of Washington

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE