Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Natural lung material is promising scaffold for engineering lung tissue using embryonic stem cells

By R&D Editors | August 19, 2010

Natural lung material is promising scaffold for engineering lung tissue using embryonic stem cells




Tissue Engineering is published 24 times a year in print and online.


Click here for more information.

New Rochelle, NY, August 19, 2010 – The first successful report of using cell-depleted lung as a natural growth matrix for generating new rat lung from embryonic stem cells is presented in a breakthrough article in Tissue Engineering, Part A, a peer-reviewed journal published by Mary Ann Liebert, Inc. (www.liebertpub.com). The article is available free online at www.liebertpub.com/ten

Embryonic stem cells (ESCs) have the potential to mature into virtually any type of cell and tissue type, but they require an appropriate environment and chemical signals to drive their differentiation into specific cell types and to form 3-dimensional tissue structures. Alternatives to available synthetic tissue matrices are needed to drive this technology forward and develop clinical applications for engineered lung tissue.

Joaquin Cortiella, MD, MPH, and colleagues from University of Texas Medical Branch (Galveston), Stanford University (Palo Alto, CA), Brown Medical School (Providence, RI), and Duke University (Durham, NC), describe the first attempt to make acellular rat lung and use it as a biological matrix for differentiating ESCs into lung tissue. The authors present evidence of improved cell retention, repopulation of the matrix, and differentiation into the cell types present in healthy lung. They also report signs that the cells are organizing into the 3-D structures characteristic of complex tissues and are producing the chemical signals and growth factors that guide lung tissue function and development.

Cortiella and coauthors describe the process used to remove the cellular component of natural lung tissue and create a growth matrix for ESCs in the article, “Influence of Acellular Natural Lung Matrix on Murine Embryonic Stem Cell Differentiation and Tissue Formation.”

“Organ-specific extracellular matrices, properly prepared, are serving more and more as the appropriate structural scaffold for the recapitulation of a specific organ’s tissues. This turns out to be especially true in an organ such as the lung, whose parenchyma must have a structure that accommodates atmospheric gas transmission as well as vascular, lymphatic, and neural systems,” says Peter C. Johnson, MD, Co-Editor-in-Chief of Tissue Engineering and Vice President, Research and Development, Avery Dennison Medical Products.

SOURCE

Related Articles Read More >

TetraScience and PerkinElmer collaborate to provide cloud customers quicker improved scientific data outcomes
SwRI developing connected vehicle data exchange platform for Florida Department of Transportation
Sofar Ocean secures $39M to drive climate mitigation and adaptation
Mike McKee appointed as Dotmatics’ president to lead data-driven scientific research
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars