Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Algorithm Cluster Improves Health Record Data Mining

By R&D Editors | May 14, 2013

The time may be fast approaching for researchers to take better advantage of the vast amount of valuable patient information available from U.S. electronic health records. Lian Duan, an NJIT computer scientist with an expertise in data mining, has done just that with the recent publication of “Adverse Drug Effect Detection,” IEEE Journal of Biomedical and Health Informatics (March, 2013).

The article spotlights a new and promising way of using a combination of commonly used existing algorithms to root out more information about adverse drug reactions within electronic health records available to the researchers. The new pattern, which when compared against the most commonly used existing sole algorithm, showed an almost 25 percent improvement in outcome. Although the idea could theoretically be applied beyond electronic health records, this paper focuses only on using them to find adverse medical reactions to a drug therapy.

“Large collections of electronic patient records have long provided abundant, but under-explored information on the real-world use of medicines. But when used properly these records can provide longitudinal observational data which is perfect for data mining,” Duan said. “Although such records are maintained for patient administration, they could provide a broad range of clinical information for data analysis. A growing interest has been drug safety.”

In this paper, the researchers proposed two novel algorithms—a likelihood ratio model and a Bayesian network model—for adverse drug effect discovery. Although the performance of these two algorithms is comparable to the state-of-the-art algorithm, Bayesian confidence propagation neural network, by combining three works, the researchers say one can get better, more diverse results.

Since the actual adverse drug effects on a given dataset cannot be absolutely determined, the researchers made use of a simulated observational medical outcomes partnership dataset. They constructed this “dataset” with the predefined adverse drug effects to evaluate their methods.

Experimental results show the usefulness of the proposed pattern discovery method on the simulated dataset by improving the standard baseline algorithm—chi-square—by 23.83 percent.

Duan, whose innovative research on large-scale data mining has applications in the business world as well as many industries, including marketing, social networking and bioinformatics. Whereas most data mining experts search for correlation pairs, he focuses on correlated sets of arbitrary size. His research focuses on correlation search, community detection, and density-based clustering and outlier detection.

Duan holds two doctorates– one in computer science from the Chinese Academy of Sciences, China, and the other in information systems with an emphasis on data mining from the University of Iowa.

Related Articles Read More >

Berkeley Lab’s Dell and NVIDIA-powered ‘Doudna’ supercomputer to enable real-time data access for 11,000 researchers
QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE