Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Catalyst Turns Ammonia into an Innovative Clean Fuel

By Kumamoto University | April 27, 2018

Taking measures against climate change and converting into societies that use significant amounts of renewable energy for power are two of the most important issues common to developed countries today. One promising technology in those efforts uses hydrogen (H2) as a renewable energy source. Although it is a primary candidate for clean secondary energy, large amounts of H2 must be converted into liquid form, which is a difficult process, for easier storage and transportation. Among the possible forms of liquid H2, ammonia (NH3) is a promising carrier because it has high H2 density, is easily liquefied, and can be produced on a large-scale.

Additionally, NH3 has been drawing attention recently as a carbon-free alternative fuel. NH3 is a combustible gas that can be widely used in thermal power generation and industrial furnaces as an alternative to gasoline and light oil. However, it is difficult to burn (high ignition temperature) and generates harmful nitrogen oxides (NOx) during combustion.

Researchers at the International Research Organization for Advanced Science and Technology (IROAST) in Kumamoto University, Japan focused on a “catalytic combustion method” to solve the NH3 fuel problems. This method adds substances that promote or suppress chemical reactions during fuel combustion. Recently, they succeeded in developing a new catalyst which improves NH3 combustibility and suppresses the generation of NOx. The novel catalyst (CuOx/3A2S) is a mullite-type crystal structure 3Al2O3·2SiO2 (3A2S) carrying copper oxide (CuOx). When NH3 was burned with this catalyst, researchers found that it stayed highly active in the selective production of N2, meaning that it suppressed NOx formation, and the catalyst itself did not change even at high temperatures. Additionally, they succeeded with in situ (Operando) observations during the CuOx/3A2S reaction, and clarified the NH3 catalytic combustion reaction mechanism.

Since 3A2S is a commercially available material and CuOx can be produced by a method widely used in industry (wet impregnation method), this new catalyst can be manufactured easily and at low cost. Its use allows for the decomposition of NH3 into H2 with the heat from (low ignition temperature) NH3 fuel combustion, and the purification of NH3 through oxidation.

“Our catalyst appears to be a step in the right direction to fight anthropogenic climate change since it does not emit greenhouse gasses like CO2 and should improve the sophistication of renewable energy within our society,” said study leader Dr. Satoshi Hinokuma of IROAST. “We are planning to conduct further research and development under more practical conditions in the future.”

This research was posted online in the Journal of Catalysis on 26 March 2018.

Related Articles Read More >

New 10,000 square-foot plasma research center in Princeton, NJ
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Sandia
Sandia Truman Fellows advance quantum optics from lab to wafer-scale and field applications
Sandia National Laboratories’ Kenneth Armijo, project lead, stands beside the Sandia Molten Salt Test Loop, the world’s largest lab-scale molten salt testing facility. (Photo by David Lienemann)
Sandia to restart molten-salt test loop with $2.5 million DOE funding
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE