Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Electronic, Medical Devices Dissolve in Water

By Kenny Walter | September 7, 2017

Imagine a medical delivery system that can dissolve in a patient’s body once its mission is complete.

A team from the University of Houston, along with researchers from China, have created a new wave of eco-friendly disposable personal electronics that can be dissolved through exposure to water molecules in the atmosphere and biomedical implants that can be dissolved within the body.

“We demonstrate that polymeric substrates with novel degradation kinetics and associated transience chemistry offer a feasible strategy to construct physically transient electronics,” the researchers wrote. “Through the manipulation of the polymer component and environmental humidity, the progress of hydrolyzing polyanhydrides can be managed and thus the dissolution kinetics of [a] functional device can be controlled.”

The researchers built functional electronic components through additive processes onto a film made of the polymer polyanhydride. The device remained stable until ambient moisture triggered a chemical breakdown that digested the inorganic electronic materials and components.

Traditionally, to produce physically transient electronics, researchers would need to completely immerse a device in aqueous corrosive solutions or biofluids. However, the research team demonstrated a new working mechanism—dissolution triggered by ambient moisture.

This enabled the researchers to precisely control the transient period, so a biomedical implant could be programmed to disappear when the intended medication is delivered.

They tested several compounds including aluminum, copper, nickel indium-gallium, zinc oxide and magnesium oxide and developed several electronic devices using this technology, including resistors, capacitors, antennas, transistors, diodes, photo sensors and others.

Along with creating a new medicine delivery system, the new technique could enable consumers to dissolve their old and no longer useful electronic devices.

The researchers also said the technology could have defense applications, including for devices that can be programmed to dissolve in order to safeguard sensitive information.

Related Articles Read More >

How IBM’s quantum architecture could design materials physics can’t yet explain
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Probiotics power a bioresorbable battery that can run from 4 to 100+ minutes
Korean engineers show off ultra-light prosthetic hand with single-motor thumb
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE