Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Game-changing Technology

By R&D Editors | December 1, 2011

New Game-changing Technology

New Game-changing Technology
This picture shows three High Operating Temperature Infrared Sensors, mounted on leadless chip carriers, fabricated in the Microdevices Laboratory at NASA’s Jet Propulsion Laboratory, Pasadena, CA. From left to right, a 1,024 x 1,024 pixel sensor, 640 x 512 pixel sensor and a 320 x 256 pixel sensor. The quarter is for size comparison. Courtesy of NASA/JPL-Caltech

Two NASA California centers have been selected to develop new space-aged technologies that could be game-changers in the way we look at planets from above and how we safely transport robots or humans through space and bring them safely back to Earth.

NASA’s Jet Propulsion Laboratory in Pasadena, CA, will use advanced compound semiconductor materials to develop new technologies for the High Operating Temperature Infrared Sensor Demonstration. The higher the temperature at which an infrared detector can operate, the less power is required to cool it. Reduced power needs can translate into operational cost and system weight savings. If successful, this sensor technology could be used in many future NASA Earth and planetary science instruments, as well as for U.S. commercial and defense applications.

“The technology demonstration effort is different in the fact that we’re focused on affordability concurrently with performance,” said Sarath Gunapala of JPL, who is project manager for the High Operating Temperature Infrared Sensor Demonstration. “This technology has excellent potential for transitioning from laboratory demonstration to NASA and commercial product lines.”

The overall goal for this technology development effort is to achieve 100 percent cost savings as compared with traditional cryogenically cooled infrared sensors. The weight and volume savings allow for more compact instruments — an important consideration for a spacecraft’s payload size and cost. This state-of-the-art technology also will have spinoff applications for commercial instrument manufacturers.

Seeking to radically change the way heat shields protect spacecraft during atmospheric entry, NASA’s Ames Research Center at Moffett Field, CA is developing the Woven Thermal Protection System. The project is a revolutionary approach to thermal protection system design and manufacturing for extreme environments. Ames is the lead center for the project, partnering with NASA’s Langley Research Center in Hampton, VA.

Partnering with the U.S. textile industry, NASA is employing an advanced, three-dimensional weaving approach in the design and manufacture of thermal protection systems. Today, lightweight aircraft parts are being manufactured using similar weaving technologies. This will be expanded to include spacecraft heatshield applications. The system will enhance performance using advanced design tools with cost savings from a shortened product development and testing cycle.

“Woven TPS has the potential to significantly impact future NASA missions by changing heat shield development from a challenge to be overcome into a mission-enabling component,” said NASA Langley’s Ethiraj Venkatapathy, principal investigator of the project. “By delivering improved heat shield performance and affordability, this technology will impact all future exploration missions, from the robotic science missions to Mars, Venus and Saturn to the next generation of human missions.”

NASA’s Game-Changing Technology Division focuses on maturing advanced space technologies that may lead to entirely new approaches for the agency’s future space missions while finding solutions to significant national needs. NASA Langley oversees project management of the Game Changing Technology programs.

JPL is managed for NASA by the California Institute of Technology in Pasadena.

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE