Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Interaction Uncovered in 2D Materials

By R&D Editors | March 10, 2016

Researchers at the University had asked the question — could self-rotation incur in heterostructures, when different crystals are stacked together such as graphene on boron nitride? It was found that perfect stacking between graphene and boron nitride did indeed exist. Furthermore, if the layers in the heterostructure were disturbed — the crystals would self-rotate back to the ideal configuration, this effect had been seen at a nanoscale but had yet to be observed on larger scales until now, as published in Nature Communications.

This scientific discovery is important for better understanding the fundamentals of how 2D materials interact with each other and how these interactions can be provided another degree of control to fine tune the materials with tailored properties.

Graphene was the world’s first two-dimensional material, isolated in 2004 at The University of Manchester, since then a whole family of other 2D materials have been discovered.

Using graphene and other new materials, scientists can layer these materials in a precisely chosen sequence known as heterostructures, to produce high-performance structures for novel applications. For example layering graphene with hexagonal boron nitride or transition metal dichalcogenides can result in new types of transistors, solar cells or light emitting diodes.

The interaction between the individual layers is governed by the van der Waals forces. It is those forces, which ensures specific stacking between the layers in layered crystals. When perfect stacking is lost, for example due to a rotational fault, the layers are restored to perfect stacking- known as self-rotation.

Sir Kostya Novoselov, who led the team of researchers, says “This work will pave the way for a new direction in physics and technology in van der Waals heterostructures. 2D crystals assembled together can exhibit dynamic properties which will be able to produce precision nanomechanics.”

Colin Woods adds, “The self-alignment mechanism will allow more controllable fabrication of ever complex van der Waals heterostructures.”

The relationship between the two materials has also exhibited interesting phenomena such as a moiré pattern — which, due to the mismatch and rotation between the layers, produces a geometric pattern similar to a kaleidoscope, and Hofstader’s elusive butterfly, a structure of energy levels in the shape of a butterfly due to the complex behavior of electrons in a magnetic field.

Although at this time, the interaction has only been observed between these two materials, this now opens up discussion on the relationship between other 2D materials and how the interactions between these materials can be used to maximize the potential of heterostructures.

Source: University of Manchester 

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE