Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New method efficiently and easily bonds gels and biological tissues

By R&D Editors | December 12, 2013

A silica nanoparticle solution for gluing two pieces of gel. These steps take only ten seconds and allow a repositionable adhesive. Gels and biological tissues are materials composed essentially of water and it is difficult to stick with conventional adhesives. The innovative method of bonding the particles leads to a rapid and effective adhesion, and is resistant to immersion in water. This is done without the addition of polymers and does not involve chemical reaction. Image: CNRS Photothèque/ESPCI/MMC  /  Alba MARCELLANResearchers have discovered an efficient and easy-to-use method for bonding together gels and biological tissues. A team headed by Ludwik Leibler, involving researchers from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI ParisTech) and the Laboratoire Physico-Chimie des Polymères et Milieux Dispersés (CNRS/ UPMC/ESPCI ParisTech), has succeeded in obtaining very strong adhesion between two gels by spreading on their surface a solution containing nanoparticles. Until now, there was no entirely satisfactory method of obtaining adhesion between two gels or two biological tissues. Published online in Nature, this work could pave the way for numerous medical and industrial applications.

Gels are materials that are mainly composed of a liquid, for example water, dispersed in a molecular network that gives them their solidity. Examples of gels in our everyday lives are numerous: gelatin used in desserts, redcurrant jelly, contact lenses or the absorbent part of children’s nappies. Biological tissues such as skin, muscles and organs have strong similarities with gels but, until now, gluing these soft and slippery liquid-filled materials using adhesives normally composed of polymers was a seemingly impossible task.

Leibler is recognized for inventing completely original materials combining real industrial interest with profound theoretical concepts. The work he carried out in collaboration with Alba Marcellan and their colleagues at the Laboratoire Matière Molle et Chimie (CNRS/ESPCI ParisTech) and the Laboratoire Physico-Chimie des Polymères et Milieux Dispersés (CNRS/ UPMC/ESPCI ParisTech) has resulted in a novel idea: gluing gels together by spreading a solution of nanoparticles on their surface.

The principle is the following: the nanoparticles of the solution bind to the molecular network of the gel, a phenomenon known as adsorption and, at the same time, the molecular network binds the particles together. In this way, the nanoparticles establish innumerable connections between the two gels. The adhesion process only takes a few seconds. The method does not require the addition of polymers and does not involve any chemical reaction.

An aqueous solution of nanoparticles of silica, a compound that is readily available and widely used in industry, particularly as a food additive, makes it possible to glue together all types of gel, even when they do not have the same consistency or the same mechanical properties. Apart from the rapidity and simplicity of use, the adhesion provided by the nanoparticles is strong since the junction often withstands deformation better than the gel itself. In addition to offering excellent resistance to immersion in water, the adhesion is also self-repairing: two pieces that have become unstuck can be repositioned and glued back together without adding nanoparticles. Silica nanoparticles are not the only materials that display these properties. The researchers have obtained similar results using cellulose nanocrystals and carbon nanotubes.

Finally, to illustrate the potential of this discovery in the field of biological tissues, the researchers successfully glued together two pieces of calf’s liver cut with a scalpel using a solution of silica nanoparticles.

This discovery opens up new applications and areas of research, particularly in the medical and veterinary fields and especially in surgery and regenerative medicine. It may for example be possible to use this method to glue together skin or organs having undergone an incision or a deep lesion. This method could moreover be of interest to the food processing and cosmetics industries as well as to manufacturers of prostheses and medical devices (bandages, patches, hydrogels, etc.).

Study title: Nanoparticle solutions as adhesives for gels and biological tissues

DOI, when active: 10.1038/nature12806

Source: CNRS

 

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE