Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Method for Determining Structure of GPCRs

By R&D Editors | December 2, 2013

The switch—corticotrophin releasing factor type 1 (CRF1R)—belongs to a class of cellular receptors whose structures are notoriously hard to determine. (Source: Wikipedia)A new approach to mapping how proteins interact with each other, developed at the Salk Institute for Biological Studies, could aid in the design of new drugs for diseases such as diabetes and osteoporosis. By reengineering proteins using artificial amino acids, the Salk scientists determine the detailed molecular structure of a cellular switch and its ligand, the molecule that turns it on. The switch—corticotrophin releasing factor type 1 (CRF1R)—belongs to a class of cellular receptors whose structures are notoriously hard to determine. These receptors regulate processes throughout the body and are involved in many diseases.

“Only when you know how the ligand binds to the receptor can you design drugs that target these processes,” said senior study author Lei Wang, an associate professor in Salk’s Jack H. Skirball Center for Chemical Biology and Proteomics and holder of the Frederick B. Rentschler Developmental Chair. Wang and his team describe the new structure and method in a Cell paper published online last week.

Typically, researchers determine the three-dimensional arrangement of atoms in a protein molecule by crystalizing the protein and measuring how X-rays diffract off the crystals. But the receptor class the Salk scientists studied—known as class B G-protein coupled receptors (GPCRs)—are tricky to coax into crystal form, since they are only stable when embedded in the cellular membranes that enclose a cell’s cytoplasm and nucleus. As a result, getting a complete picture of their structure—let alone the structure of the receptor combined with its bound ligand—hasn’t been possible.

Wang’s team turned to a new approach to try and figure out what CRF1R’s binding pocket—the area where the ligand attaches—looked like. Using genetic engineering, the scientists added a unique new amino acid, one of the building blocks of proteins, to spots all along CRF1R.

“When you shine light on this artificial amino acid, it grabs nearby molecules,” explained Irene Coin, a postdoctoral fellow in Wang’s team. “It’s like a sticky hand.”

When the artificial amino acid, Azi, was added to any spot where the CFR1R ligand attached to the receptor, the sticky hand grabbed the ligand, a molecule called urocortin-1, and kept it bound to the receptor. If Azi was integrated into a place where urocortin-1 didn’t associate, however, it would have nothing to grab. By detecting whether CFR1R and urocortin-1 become irreversibly attached, the researchers would know whether the Azi had been integrated into part of the binding pocket or not.

Repeating this technique throughout the CFR1R molecule revealed that the receptor’s binding pocket consisted of at least 35 amino acids. But that didn’t give the researchers the full picture they wanted of the interaction.

“This first, sticky hand probe had given us information about the shape of the binding pocket,” said Wang. “But we still didn’t know how the ligand is oriented inside that pocket.”

So they used a second probe—one which was more selective than the “sticky hand” in the receptor. This time, the probe would only capture one particular amino acid—cysteine. “We inserted cysteines along the ligand to figure out which parts of the receptor were close to precise spots of the ligand”, said Wang. It took more than a hundred different combinations to get a perfect match, where the artificial amino acids in the receptor lined up with the cysteines in the urocortin-1.

“We discovered that the ligand lies in the receptor’s binding pocket like a too-tall person in a bathtub,” Coin said. “One end of the ligand is like the head sticking out, and on the other end, the feet are dangling out.”

“This shape makes sense in light of previous data,” said Wang. “Because we already knew that you can add a lot of molecules onto the feet of the ligand and it doesn’t affect the receptor-ligand interaction.”

When they know which amino acids in a ligand interact with which amino acids in a receptor, scientists can begin designing ways to block the interaction between the pair, by creating new molecules that attach to the receptor, for instance. So Wang sees the new structure—and the new approach for determining it—as a key step forward for designing drugs that target class B GPCRs.

“The beauty of this method is that it can be a general method to map other binding pockets and protein interactions as well,” Wang adds. “Its use isn’t limited to only GPCRs.”

Date: December 2, 2013
Source: Salk Institute for Biological Studies

 

 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE