Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Method Proposed to Correct Common Power Problem in Microgrids

By Chinese Association of Automation | June 7, 2017

Scientists from the Northeastern University, China, have developed a new method to diagnosis a serious electrical problem in microgrids. They published their work in IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the Institute of Electrical and Electronic Engineers (IEEE) and the Chinese Association of Automation.

Microgrids are island-like pods of power generation with bridges to the main power grid. If power supplied by the main grid stops, the microgrid can disconnect and continuing supplying power locally.

“In response to societal requirements, [the] microgrid system has received considerable attention,” wrote Prof. Zhanshan Wang and Prof. Huaguang Zhang. “The reliability of the inverter is considered an important factor to guarantee the high quality, continuousness, and safe operation of the microgrid.”

The inverter takes the direct current supplied by the main grid, and converts it into an alternating current – something household electronics can use.

Power flows through the circuit, from the source to a computer or coffeemaker. When the appliance is no longer needed, a switch interrupts the circuit, rerouting the current to wherever else it’s needed.

But sometimes the switch sticks, and the current continues to flow.

“[An open-switch fault] often affects the normal operation of the entire drive system and causes many serious influences,” said Wang. “For example, [it can cause]… overcurrent stress to other power switches or electronic components… low efficiency; [and] high repair costs.”

The switch can be flipped back and the problem corrected – if you know there’s a fault and where it is. A switch fault, which can cause an electrical fire, may not be obvious until the fallout is impossible to miss. With so many switches throughout the microgrid system, it’s nearly impossible to determine which one is at fault.

That’s the problem this research team set out to solve. They developed an algorithm to accurately identify multiple signals at multiple levels in the circuit, which can determine if there a switch fault exists. The location of the faulty signals are identified through an artificial neural network – a series of connected computers that learns to process information based on the information itself.

The combination of the algorithm and the neural network can help detect and identify the exact open-switch fault, according to the researchers. Since the detection and identification occurs simultaneously, the scientists also say that their method can improve the reliability, efficiency, and cost of the microgrid.

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE