Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

New photon detector knows when to “not know”

By R&D Editors | June 26, 2013

In some standardized tests, the graders add in a penalty factor for wrong answers to discourage students from randomly guessing. It turns out that there’s a lesson here for advanced communications as well. In some experimental communications schemes where information is carried by light pulses containing one or even less than one photon on average, it’s better not to guess if you’re not sure.

These systems, which could be used in applications as varied as the internal messaging in a quantum computer or ultra-secure long distance communications, would encode information as one of four different phase states of the photons—a property they have when considered as waveforms. Cool, yes, but there’s a certain amount of overlap in the phases that could lead to ambiguous answers. In those cases you want your photon detector to be a smart student and not guess, because in secure communications, wrong is worse than “I don’t know.”

In new work reported in Nature Communications researchers from the National Institute of Standards and Technology (NIST) and the Joint Quantum Institute (JQI) have built a single-photon detector that does just that, making highly accurate measurements of incoming photons while knowing when not to give a conclusive answer. Their system achieves error rates as much as nine times lower than more conventional measurement systems.

More details at Joint Quantum Institute: Quantum Information in Low Light.

Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states

Source: NIST

Related Articles Read More >

COMSOL announces event series introducing Multiphysics Version 6.0
Look who’s turning 25: Z machine celebrates its colorful history at Sandia
Scientists create world’s thinnest magnet
LaserNetUS High-Power Laser Consortium, including Berkeley Lab, receives $18M from the U.S. DOE
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars