Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Plant Vaccine Could Replace Pesticides

By Kenny Walter | April 6, 2018

A novel vaccine could replace traditional pesticides in protecting crops and other plants without putting humans or the environment at risk.

An international team led by researchers from the University of Helsinki and the French National Centre for Scientific Research has created a new method to produce a vaccine that triggers RNA interference—an innate defense mechanism of plants, animals and other eukaryotic organisms against pathogens.

The researchers demonstrated the efficacy of RNA-based vaccines by utilizing the RNA amplification system of bacteriophage—a bacteria-destroying virus—and the RNA production that takes place in bacterial cells.  

The vaccine can target to a chosen pathogen by using RNA molecules that share sequence identity with the pest’s genes and prevents their expression. The double-stranded RNA molecules do not affect the expression of genes in the protected plant and only target the plant disease or pest.

“The challenge in developing RNA-based vaccines to protect plants has involved the production of RNA molecules,” Minna Poranen, PhD, of the Molecular and Integrative Biosciences Research Programme at the University of Helsinki’s Faculty of Biological and Environmental Sciences, said in a statement. “Double-stranded RNA molecules have been produced through chemical synthesis, both as drug molecules and for research purposes, but such production methods are inefficient and expensive for plant protection.”

Emerging technologies for crop protection include the external treatment of plants with double-stranded (ds) RNA to trigger RNA interference. However, using this method in greenhouses and fields depends on the dsRNA quality, stability and efficient large-scale production.

The researchers used components of the bacteriophage phi6 to engineer a stable and accurate in vivo dsRNA production system in Pseudomonas syringae bacteria.

The new system is based on the replication of dsRNA by an RNA-dependent RNA polymerase, enabling the production of high quality, long dsRNA molecules.  

The method will enable the effective production of RNA-based vaccines and promote the development and adoption of RNA-based plant protection methods.

“It’s difficult to predict when the vaccine will be made available because no relevant legislation exists yet,” Poranen said.

Plant diseases and insects can cause significant crop losses and threaten the overall global food security. While traditional pesticides take care of some of these issues, they also cause damage to the environment and may be hazardous to human health and other organisms.

“A new approach to plant protection involves vaccinating plants against pathogens with double-stranded RNA molecules that can be sprayed directly on the leaves,” Poranen said.

The study was published in Plant Biotechnology Journal. 

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE