Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Species of Electrons Can Lead to Better Computing

By R&D Editors | September 11, 2014

It is extremely rare to come across with a phenomenon that bridges materials science, particle physics, relativity and topology.Electrons that break the rules and move perpendicular to the applied electric field could be the key to delivering next generation, low-energy computers, a collaboration of scientists from The University of Manchester and the Massachusetts Institute of Technology have found.

In a research paper published in Science, the collaboration led by MIT’s theory professor Leonid Levitov and Manchester’s Nobel laureate Sir Andre Geim report a material in which electrons move at a controllable angle to applied fields, similar to sailboats driven diagonally to the wind.

The material is graphene — one atom-thick chicken wire made from carbon — but with a difference. It is transformed to a new so-called superlattice state by placing it on top of boron nitride, also known as `white graphite,’ and then aligning the crystal lattices of the two materials. In contrast to metallic graphene, a graphene superlattice behaves as a semiconductor.

In original graphene, charge carriers behave like massless neutrinos moving at the speed of light and having the electron charge. Although an excellent conductor, graphene does not allow for easy switching on and off of current, which is at the heart of what a transistor does.

Electrons in graphene superlattices are different and behave as neutrinos that acquired a notable mass. This results in a new, relativistic behavior so that electrons can now skew at large angles to applied fields. The effect is huge, as found in the Manchester-MIT experiments.

The reported relativistic effect has no known analogue in particle physics and extends our understanding of how the universe works.

Beyond the discovery, the observed phenomenon may also help enhance the performance of graphene electronics, making it a worthy companion to silicon.

The research suggests that transistors made from graphene superlattices should consume less energy than conventional semiconductor transistors, because charge carriers drift perpendicular to the electric field, which results in little energy dissipation.

The Manchester-MIT researchers demonstrate the first such transistor, which opens a venue for less power hungry computers.

Professor Geim comments ‘It is quite a fascinating effect, and it hits a very soft spot in our understanding of complex, so-called topological materials. It is extremely rare to come across with a phenomenon that bridges materials science, particle physics, relativity and topology.’

Professor Levitov adds ‘It is widely believed than unconventional approaches to information processing are key for the future of IT hardware. This belief has been the driving force behind a number of important recent developments, in particular the development of spintronics. The demonstrated transistor highlights the promise of graphene-based systems for alternative ways of information processing. ’

The paper ‘Detecting topological current in graphene superlattices” by R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S. Novoselov, L. S. Levitov, A. K. Geim’, appeared in Science as express online publication on September 11, 2014, and is downloadable from  http://arxiv.org/ftp/arxiv/papers/1409/1409.0113.pdf .

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE