Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

New Structural Color Inspired by Tarantulas

By University of Akron | February 9, 2017

Inspired by the hair of blue tarantulas, researchers from The University of Akron lead a team that made a structural-colored material that shows consistent color from all viewing directions. This finding overturns the conventional wisdom that long-range order photonic structures are always iridescent, opening new potential to mass produce structural colors because highly ordered designs are easy to scale-up and manufacture. Bor-Kai (Bill) Hsiung and his colleagues at UA, Ghent University, Karlsruhe Institute of Technology and the University of Nebraska-Lincoln published their research, which is featured on the cover of the January 2017 journal of Advanced Optical Materials.

“Structural colors are more vibrant and durable than the pigments used in most human-made products,” explains Hsiung, the lead author of this research and a Biomimicry Fellow in the Integrated Bioscience Ph.D. program at The University of Akron. “They are produced by optical effects when light interacts with nanostructures that are about the same size as the wavelength of light.” Think of a peacock, or a butterfly. The problem is that most structural colors are strongly iridescent, changing color when viewed from different angles. It’s beautiful out in nature, but not very functional when we’re watching television and we move to a new seat.”

The team first discovered that many vibrant blue tarantulas do not show iridescence even though the spiders use nanostructures to produce those colors. Since the spider’s blue color is not iridescent, Hsiung’s team suggested that the same process could be applied to make pigment replacements that never fade, as well as to help reduce glare on wide-angle viewing systems in phones, televisions and other devices.

As they dug deeper, they found that the hairs of some species of blue tarantulas show a special flower-like shape that they hypothesized reduced the iridescent effect resulting from periodic structures. Then, thanks to the crowdfunding push they received earlier, they were able to test this hypothesis using a series of computer simulations and physical prototypes built using cutting-edge nano-3D printing technology.

Their color produced by the 3D printed structures has a viewing angle of 160 degrees, the largest viewing angle of any synthetic structural colors demonstrated.

“These structural colorants could be used as pigment replacements — many of which are toxic — in materials such as plastics, metal, textiles and paper, and for producing color for wide-angle viewing systems such as phones and televisions,” Hsiung says.

Source: University of Akron

 

Related Articles Read More >

What are nanoparticles?
Breakthrough paves way for photonic sensing at the ultimate quantum limit
TROY awarded $161K National Science Foundation grant
NanoScientific Symposium 2022 now open for registration
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars