Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

New technique detecting sugar-coated proteins could identify diseases earlier

By R&D Editors | March 28, 2013

Marta Pereira MoraisScientists from the University of Bath’s Departments of Biology & Biochemistry and Chemistry have developed a new technique that could be used in blood tests to detect a range of age-related conditions such as diabetes, dementia, and Alzheimer’s.

In the process of aging, proteins in the body react with sugars in a process called glycation. This damages the protein’s function which in some diseases can trigger complications such as inflammation and premature aging.

The team of chemists and biochemists at Bath have developed a technique that detects levels of glycated proteins in blood and tissue samples, which can be used to assess the damage caused by sugars in age-related diseases.

The technique, published in Scientific Reports, is based on gel electrophoresis, where samples are put into a thin gel layer and an electric current is applied. The gel acts like a molecular sieve, sorting proteins from the samples according to their size and shape, allowing scientists to identify whether specific proteins are present in the sample.

The system, patented by the research team, uses boronic acid labeled with a fluorescent tag to distinguish between the glycated and unmodified proteins. The method also, allows them to distinguish glycated proteins from proteins that have been glycosylated; a normal process in healthy cells where sugars are added using enzymes.

Researchers are now looking for industrial partners to collaborate and develop the system to detect levels of glycated proteins in human blood samples, leading to a simple test for a variety of age-related diseases.

Jean Van Den Elsen, from the University’s Department of Biology & Biochemistry, explains, “We are currently using our technique to understand how these age-related diseases work, by identifying new biomarkers for diseases such as Alzheimer’s disease (AD) and testing how new treatments affect levels of glycated proteins.

Marta Pereira Morais, the postdoctoral researcher on the project adds, “So far we’ve proven this test is able to detect glycated proteins in blood and in a caterpillar model for diabetes. We have also been able to distinguish between brain material from healthy mice and those with AD pathology.

“We hope in the future to develop this technology into a simple blood test for diseases such as AD, so that patients with the condition can be diagnosed and treated earlier.”

Source: University of Bath

Related Articles Read More >

Novel mass spectrometry solution simplifies insight gathering into macromolecular complexes
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Thermo Fisher Scientific autoimmune-testing instruments now available in the U.S.
Thermo Fisher Scientific and Qatar Genome Program partner to advance precision medicine 
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars