Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New technique to understand cloud behavior

By R&D Editors | May 28, 2015

One of the cameras looking over Miami’s Biscayne Bay.With two off-the-shelf digital cameras situated about 1 km apart facing Miami’s Biscayne Bay, Lawrence Berkeley National Laboratory scientists David Romps and Rusen Oktem are collecting 3-D data on cloud behavior that have never been possible to collect before.

The photos allow Romps, a climate scientist who specializes in clouds, to measure how fast the clouds rise, which in turn can shed light on a wide range of areas, ranging from lightning rates to extreme precipitation to the ozone hole. Perhaps most importantly, a better understanding of basic cloud behavior will allow scientists to improve global climate models.

“We want to answer a very basic question: with what speeds do clouds rise through the atmosphere? This is very difficult to answer by any technology other than stereophotogrammetry,” he said. “Knowing their speeds is important for several reasons; the important one is that we lack a really basic understanding of what processes control these clouds, the levels they peter out at, and how buoyant they are.”

While stereophotogrammetry, which uses photos to make 3-D measurements of cloud boundaries, has been used before to study cloud behavior, Romps’ innovation was a technique that does not require a reference point, such as a mountain or other land-based feature. This allows scientists to study clouds over the open ocean.

“We have a lot of measurements of clouds over land, but far fewer over the ocean,” Romps said. “The behavior can be quite different. For example, looking at satellite data, you see continental areas light up with a lot of lightning and oceans less so.”

The technique was detailed in a paper published in the Journal of Atmospheric and Oceanic Technology. Co-authors include Berkeley Lab computing experts Oktem, James Lee, Aaron Thomas and Prabhat, and Paquita Zuidema of the Univ. of Miami.

The paper describes how to set up and calibrate the two cameras; Romps and his team also devised algorithms to automate the 3-D reconstruction, quickly finding feature points and matching them. The accuracy of the technique was validated with lidar and radiosondes.

With images taken every 10 to 30 sec, “we can really start to look at the full lifecycle of clouds,” said Romps, who has a joint appointment in UC Berkeley’s Dept. of Earth and Planetary Science. His technique also offers far higher spatial and temporal resolution than other technologies.

The U.S. Dep.t of Energy’s Atmospheric Radiation Measurement (ARM) program has funded a second set of cameras at its Southern Great Plains site in Oklahoma, the largest and most extensive climate research site in the world. Across about 55,000 square miles, clusters of lidar, radar, and other sophisticated monitoring equipment gather massive amounts of data to study the effects of aerosols, precipitation, surface fluxes and clouds on the global climate.

Using stereophotogrammetry, Romps has measured the speeds of shallow clouds rising through the atmosphere at 1 to 3 m/sec and of deeper clouds rising at speeds in excess of 10 m/sec. “The updraft speeds play an important role in the microphysics, general precipitation, and aerosol processing, which all impact climate simulations,” he said.

Updraft speeds can also impact lightning rates, as faster clouds tend to produce more lightning. And if clouds are fast enough they can penetrate the stratosphere. “They can throw out water vapor and ice, which sets the humidity of the stratosphere, and that has an impact both because water vapor is greenhouse gas and also because water vapor, through a sequence of events, has an effect on the ozone hole,” Romps said.

The largest source of uncertainty in today’s climate models is clouds. “We are still seeking a fundamental theory for moist convection, or what we call convection with phase changes. Without that theory, it is difficult to construct more accurate parameterizations [or models] of clouds that go into global climate models,” Romps said. “Stereophotogrammetry can provide very useful information in this quest.”

The next steps are to combine the stereophotogrammetric data with other observations at the ARM site to answer basic questions about cloud life cycles. In particular, Romps and colleagues want to understand what environmental conditions can be used to forecast the sizes, speeds, depths, and lifetimes of convective clouds.

Romps and Oktem are also developing new techniques to automate the reconstruction of three-dimensional cloud features. Until now, stereophotogrammetry has been a labor-intensive process, but their new algorithms have been used on supercomputers to rapidly reconstruct 35 million cloud features from a three-month period. “The development of these new algorithms makes stereophotogrammetry a tool that can now be used on a regular basis,” Romps said.

Source: Lawrence Berkeley National Laboratory

Related Articles Read More >

DNA microscope offers new 3D view of organisms from the inside out
A tale of two industries: How manufacturing and medical imaging experts can learn from each other
Dark energy camera captures the glittering galaxies of the Antlia Cluster
R&D 100 winner of the day: Automated digital slide scanner, MSP 320
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE