A new technology that may assist in the treatment of brain cancer and other neurological diseases is the subject of an article in Technology.
According to the authors, the current medical use of chemotherapy to treat brain cancer can be inefficient because of the blood-brain-barrier that impedes the delivery of drugs out of blood vessels and into the tumor.
The researchers from the Virginia Tech – Wake Forest Univ. School of Biomedical Engineering and Sciences described in their article that they have created “a tool for blood-barrier-brain disruption that uses bursts of sub-microsecond bipolar pulses to enhance the transfer of large molecules to the brain.”
The members of the biomedical school are: Rafael V. Davalos, associate professor of biomedical engineering; John H. Rossmeisl Jr. and Thomas Rogers-Cotrone of the Virginia-Maryland College of Veterinary Medicine; Christopher Arena, Paulo A. Garcia and Michael B. Sano of the Bioelectromechanical Systems Laboratory and John D. Olson of the Center for Biomolecular Imaging.
The new tool is called Vascular Enabled Nanosecond pulse or VEIN pulse. It will “reversibly open the blood-brain-barrier to facilitate the treatment of brain cancer,” Davalos explained.
“The sub-lethal nature of these electrical bursts indicates that the VEIN pulse may be useful for treating other neurological disorders such as Parkinson’s disease, epilepsy and Alzheimer’s disease,” Davalos added.
In their testing, the VEIN pulse treatments were administered using minimally invasive electrodes inserted into the skull of each of the 18 anesthetized male rats. They varied the pulse duration within a burst, the total number of bursts (90 to 900), and the applied field. A key element of their success was that the pulses alternated in polarity to help eliminate muscle contractions and the need for a neuromuscular blockade.
The next step in this research would be to move to large animal, pre-clinical trials.
Source: Virginia Tech