Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Non-Flammable Graphene Membrane Developed for Safe Mass Production

By University of Arkansas, Fayetteville | April 13, 2017

University of Arkansas researchers have discovered a simple and scalable method for turning graphene oxide into a non-flammable and paper-like graphene membrane that can be used in large-scale production.

“Due to their mechanical strength and excellent charge and heat conductivities, graphene-based materials have generated enormous excitement,” said Ryan Tian, associate professor of inorganic chemistry in the J. William Fulbright College of Arts and Sciences. “But high flammability jeopardizes the material’s promise for large-scale manufacturing and wide applications.”

This characteristic of graphene has been an obstacle to further development and commercialization. However, this new discovery  makes it possible to safely mass-produce graphene and graphene membranes to improve a host of products, from fuel cells to solar cells to supercapacitors and sensors. Tian has a provisional patent for this new discovery.

Using metal ions with three or more positive charges, researchers in Tian’s laboratory bonded graphene-oxide flakes into a transparent membrane. This new form of carbon-polymer sheet is flexible, nontoxic and mechanically strong, in addition to being non-flammable.

Further testing of the material suggested that crosslinking, or bonding, using transition metals and rare-earth metals, caused the graphene oxide to possess new semiconducting, magnetic and optical properties.

For the past decade, scientists have focused on graphene, a two-dimensional material that is a single atom in thickness, because it is one of the strongest, lightest and most conductive materials known. For these reasons, graphene and similar two-dimensional materials hold great potential to substitute for traditional semiconductors. Graphene oxide is a common intermediate for graphene and graphene-derived materials made from graphite, which is a crystalline form of carbon.

The research was conducted by Hulusi Turgut, doctoral student in the U of A microelectronics-photonics program and the Institute for Nanoscience and Engineering. Part of the material’s characterization was done by Fengjiao Yu and Wuzong Zhou at the University of St. Andrews in the United Kingdom.

The researchers’ findings were published in The Journal of Physical Chemistry. This intellectual property is patented by the University of Arkansas.

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE