Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Non-wetting fabric drains sweat

By R&D Editors | May 20, 2013

A new type of fabric works like human skin, forming excess sweat into droplets that drain away by themselves.Waterproof fabrics that whisk away sweat could be the latest application of microfluidic technology developed by bioengineers at the University of California, Davis (UC Davis).

The new fabric works like human skin, forming excess sweat into droplets that drain away by themselves, says inventor Tingrui Pan, professor of biomedical engineering. One area of research in Pan’s Micro-Nano Innovations Laboratory at UC Davis is a field known as microfluidics, which focuses on making lab-on-a-chip devices that use tiny channels to manipulate fluids. Pan and his colleagues are developing such systems for applications like medical diagnostic tests.

Graduate students Siyuan Xing and Jia Jiang developed a new textile microfluidic platform using hydrophilic (water-attracting) threads stitched into a highly water-repellent fabric. They were able to create patterns of threads that suck droplets of water from one side of the fabric, propel them along the threads, and expel them from the other side.

“We intentionally did not use any fancy microfabrication techniques so it is compatible with the textile manufacturing process and very easy to scale up,” says Xing, lead graduate student on the project.

It’s not just that the threads conduct water through capillary action. The water-repellent properties of the surrounding fabric also help drive water down the channels. Unlike conventional fabrics, the water-pumping effect keeps working even when the water-conducting fibers are completely saturated, because of the sustaining pressure gradient generated by the surface tension of droplets.

The rest of the fabric stays completely dry and breathable. By adjusting the pattern of water-conducting fibers and how they are stitched on each side of the fabric, the researchers can control where sweat is collected and where it drains away on the outside.

Workout enthusiasts, athletes, and clothing manufacturers are all interested in fabrics that remove sweat and let the skin breathe. Cotton fibers, for example, wick away sweat—but during heavy exercise, cotton can get soaked, making it clingy and uncomfortable.

A paper describing the research was published in Lab on a Chip.

Source: University of California, Davis

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE