Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

NSF’s Most Powerful Computing Resource Opens Doors to Six Science Teams

By R&D Editors | March 21, 2012

NSF’s Most Powerful Computing Resource Opens Doors to Six Science Teams

the first all-atom structure of an HIV virus capsid in its tubular form
From Klaus Schulten’s project about HIV infection, this image is of the first all-atom structure of an HIV virus capsid in its tubular form. Schulten and his team at the University of Illinois at Urbana-Champaign are studying the protein capsid that encases the HIV-1 genome. The process through which this capsid disassembles, releasing its genetic material, is a critical step in HIV infection. Schulten’s group will simulate a cylindrical capsid consisting of 12.5 million atoms. Courtesy of NCSA

Six research teams have started to use the first phase of the Blue Waters sustained-petascale supercomputer to study some vexing problems in science and engineering from climate change to the HIV infection. It’s the first use of Blue Waters, which is on its way to becoming one of the most powerful supercomputers in the world.

“This is an exciting and important milestone in the Blue Waters project,” said Irene Qualters, program director of the National Science Foundation’s (NSF) Office of Cyberinfrastructure, which supports Blue Waters, along with the University of Illinois’ National Center for Supercomputing Applications (NCSA).

“It began as an idea,” Qualters said, “and now, thanks to sustained collaborative efforts by the entire project team, the vendor and researchers, this computational tool is beginning to advance fundamental understanding in a wide range of scientific topics.”

Through a competitive process, NSF and NCSA awarded more than two dozen research teams Petascale Computing Resource Allocations — time to use Blue Waters on compelling research questions. From among these, a smaller group of six teams was selected to use the Early Science System before the full Blue Waters system is deployed later this year.

Those teams will pursue the following research:

• Modeling of high-temperature plasmas, including magnetic reconnection and flux transfer events to better understand the impact of the solar wind and solar flares on the Earth’s atmosphere;

• Simulating the formation and evolution of the Milky Way’s most distant ancestors, a population of small galaxies formed shortly after the Big Bang.

• Examining the protein that encases the HIV-1 genome. The process through which this protein disassembles, releasing its genetic material, is a critical step in HIV infection.

• Exploring explosive burning in Type Ia supernovae, which are used as “standard candles” for surveying astronomically vast distances, with unprecedented resolution afforded by a fine level of adaptive mesh refinement simulations.

• Simulating the end of both the 20th and 21st centuries to explore changes in the frequency and intensity of extreme events, such as tropical cyclones and mid-continental thunderstorms that are not adequately resolved in global climate models at lower resolution.

All of the more than two dozen teams are in line to use the full Blue Waters system when it is deployed.

The Blue Waters Early Science System is made up of 48 Cray XE6 cabinets and represents about 15 percent of the total Blue Waters computational system. It is currently the most powerful computing resource available through NSF.

Once fully deployed, Blue Waters is expected to make arithmetic calculations at a sustained rate in excess of 1,000-trillion operations per second (a “petaflop” per second). It will enable researchers across a variety of disciplines to tackle some of the most challenging research issues in science and engineering.

Read more about the first six projects to use the Early Science System on the NCSA Web site.

Related Articles Read More >

QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE