Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Observing the random diffusion of missing atoms in graphene

By R&D Editors | May 30, 2014

Key components for the success of the study were the combination of ultra high vacuum and low acceleration voltage Image: University of ViennaImperfections in the regular atomic arrangements in crystals determine many of the properties of a material, and their diffusion is behind many microstructural changes in solids. However, imaging non-repeating atomic arrangements is difficult in conventional materials. Now, researchers at the University of Vienna have directly imaged the diffusion of a butterfly-shaped atomic defect in graphene, the recently discovered two-dimensional wonder material, over long image sequences. The results are published in the journal Nature Communications.

Atomic scale defects are always present in materials. For conventional materials they are hidden inside a large number of perfectly arranged atoms, except for at the surface. However, the situation is different in the case of low-dimensional materials like graphene.

Graphene is a honeycomb-like arrangement of carbon atoms only one carbon atom thick. Since its discovery in 2004, several remarkable properties of this material have been measured. For example, it is stronger than diamond and conducts electricity better than copper, but is nevertheless transparent and remarkably flexible. Because all of the atoms in graphene are at the surface, individual atoms and any defects in the structure are directly visible in a high resolution electron microscope, but at the same time they easily interact with the environment.

The defect the researchers concentrated on in the recent study in Vienna is a double vacancy that forms when two atoms are missing from the crystal. In the most stable form of this defect the hexagons of the graphene lattice transform into an arrangement of four pentagons and four heptagons (five and seven-membered carbon rings, respectively) which looks like an atomic-scale butterfly. The study was carried out with the Nion UltraSTEM 100 microscope, which was installed in Vienna only last year. The combination of ultra high vacuum and low acceleration voltage of this device were key components for the success of the study. In earlier experiments, the defects have always rapidly evolved into more complex structures or converted back into crystalline graphene, thus preventing the continuous imaging of their diffusion over long periods of time. Now, the defects remained stable for a longer amount of time that allowed a statistical analysis of their motion.

The researchers used the electron beam of the microscope to transform the defect between different arrangements, which resulted in a migration of the structure from one image to the next. “It was remarkable to see for the first time how a defect transforms and migrates in the crystal over several minutes while we are watching it,” says Dr. Jani Kotakoski, the lead author of the study. A careful analysis of the path of the defect revealed that the defect performed a random walk through the crystal.

“Our study opens a new route for the direct study of defect migration and diffusion in low-dimensional materials, which can also lead to new insights into defect dynamics in solids in general,” he concludes.

Source: University of Vienna

 

Related Articles Read More >

DNA microscope offers new 3D view of organisms from the inside out
A tale of two industries: How manufacturing and medical imaging experts can learn from each other
Dark energy camera captures the glittering galaxies of the Antlia Cluster
R&D 100 winner of the day: Automated digital slide scanner, MSP 320
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE